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Abstract 

Several firms face attacks by multiple types of hackers with type dependent losses during a multiple period 

planning horizon. It is possible for a hacker that failed to breach the system in a period and decided to try 

breaching the system again in the next period. At the beginning of the planning horizon, each firm decides 

on the level of investment for cyber security counter measures. An insurer offers multiperiod cyber 

insurance coverage to firms with risk averse decision makers. The cyber insurance premium offered 

depends on the cyber security implemented at the firm. We address the software monoculture issue by 

assuming that the common or popular software used by all firms is a source of correlated risk. Two types 

of cyber security interdependence breaching process due to the software monoculture risk were analyzed. 

For each period, we derive the mean and variance for several performance measures of interest, including 

the number of breaches. It enables us to develop the multiple period cyber insurance pricing model. We 

show that the mean and variance for the number of breaches and our pricing formula converge to the long 

run averages geometrically. We demonstrate the usefulness of our model through numerical examples. 
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1. Introduction 
 

Our life is fully intertwined with the internet of things, a catch-all term for the billions of smart devices 

connecting our world: speakers, thermostats, wristwatches, and other devices that are connected to the 

internet. The ever-growing dependence of individuals and businesses on digital technology has made the 

threat and potential cost of cyber-attacks ubiquitous and persistent. It is not surprising that the need to 

protect confidential information is a real and growing concern for individuals as well as at the highest 

levels of government and industry. That's where cybersecurity comes in. However, cybersecurity is more 

than just about keeping computer systems and electronic data safe. The CrowdStrike disruption stemmed 

from a defect found in a single content update for Microsoft Windows hosts causing global tech outage in 

July 2024, shows the effects of a system failure (July 19, 2024, Reuters). Cybersecurity aims to protect 

devices, networks, software and data from internal or external cyber threats. Getting hacked isn’t just a 

direct threat to the confidential data companies need. It can also ruin their relationships with customers and 

even being sued for negligence (e.g., Australia regulator sues FIIG Securities for cybersecurity failures, 

March 13, 2025, Reuters).  

It feels like we hear about a new type of cyber fraud targeting individuals or businesses every day. 

Thieves steal customer social security numbers from corporations’ computer systems. Unscrupulous 

hackers grab passwords and personal information from social media sites or pluck company secrets from 

the cloud. Furthermore, Artificial intelligence (AI) is making it easier for hackers to send out many  
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phishing emails. These emails have perfect grammar and are often more convincing than those written by 

the hackers themselves. The reality is that AI allows attackers to generate thousands of unique and high-

quality phishing emails in seconds. These AI generated emails can perfectly mirror someone’s writing 

style, or they can discuss a real project that’s being worked on. VIPRE’s Email Threat Trends Report 2024 

have found that 40% of all phishing emails are now generated by AI and Heiding et al 2024 found that 

60% of people who receive an AI generated phishing email fall for it. Furthermore, it has been reported 

that from November 2021 to October 2022, Microsoft Office applications were the most exploited 

applications worldwide at 70% (Sobers, 2023; Petrosyan, 2023). 

It should be recognized that cyber-attacks are not new as they have been happening for decades. 

As we have become more dependent on digital technology and infrastructure, created more value in digital 

assets and more usage of the Internet, then the potential for harm resulting from cyberattack has grown 

significantly. Furthermore, the cybersecurity business is a loaded game, and it favors the attackers. The 

cost for hackers to launch attacks is much cheaper than the cost for firms to defend against such attacks. 

Even the very modest resources of the attackers can create huge threats to firms trying to fend off potential 

attacks, despite the latter’s extensive monetary and technical resources. Therefore, it is not surprising to 

see that the annual cybersecurity spending continues to grow despite ongoing macroeconomic uncertainty 

and constrained IT budgets. For example, Gartner reported that the annual cybersecurity spending 

worldwide is $193 billion in 2024; projected to reach $213 billion in 2025 and estimated to grow to $240 

billion in 2026.  

We also must recognize that we don’t live in a perfect world and perfect defense against cyber-

attacks doesn’t exist. Therefore, we must accept a level of risk, a residual risk that exists even after we 

have deployed our best defenses. Being cyber-secure means accepting a level of insecurity but attempting 

to manage it so we can survive should the worst happen. Therefore, cyber-risk is a risk that must be 

managed, and to do that we must understand the nature of the cyber risks that we face. Therefore, if a 

hacker gets into the system, the company needs a tested incident response plan to help regain control of 

their networks and minimize the damage.  

Insurers play a critical role in ensuring businesses are prepared to respond to cyber-attacks. Not 

only do they provide financial support, but they also have partnerships with security vendors and experts 

who can help businesses quickly recover. These tools are especially useful for smaller businesses. Small 

and medium-sized companies might not have their own IT security department, they might not have their 

own troubleshooter, so they tend to rely more on services that are offered by cyber insurance. A well-

designed cyber insurance policy could reduce the number of cyber-breaches by incentivizing the adoption 

of preventative/counter measures in return for more coverage and the implementation of best practices by 

basing premiums on an insured implemented level of cyber security self-protection. On the other hand, a 

poorly designed cyber insurance program could shift too much risk to the insurer and reduce firms’ 

incentives to shore up cybersecurity. In practice, more organizations are buying cyber insurance for the 

first time or are expanding it as cyber insurance has been gaining increasing acceptance among firms. This 

market is growing as more insurers are adding cyber insurance policies with higher limits to their 

offerings. The customers also want cyber insurance to provide broader coverage. For example, the growing 

need to cover business interruption and contingent business interruption risks is due to expanding 

dependence on technology. This is a significant market driver for cyber insurance as traditional business 

interruption coverage generally does not cover losses when cyber incidents are the cause. However, 

estimating the premium continues to be a significant challenge in cybersecurity insurance. This requires 

that insurers understand the probability of a breach or the number of breaches occurring. Estimating the 

probability of a breach or the number of breaches occurring is complex and is based on a few factors. 

Cybersecurity breaches tend to be correlated across firms in the same industry. The probability of a breach 

or the number of breaches occurring also depends upon the amount of resources the firm deploys in its IT 

security budget. Other factors include whether the firm is diversified in its use of software.  

 

Section 1.1: Related Work 

In this subsection, we present an overview/grouping of existing research papers that are related to 

our research topic. There is a line of research in the economics of information security that is of interest to 

us. The most established model to relate optimal security investments and vulnerability reduction is due to 

Gordon and Loeb (Gordon and Loeb 2002). Specifically, a firm needs to determine the most effective level 

of information security investment, based on the nature of the information sets it intends to protect, the 

vulnerability of its information systems, the potential loss associated with a security breach if it does occur,  
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and the security environment that it faces. This is a single firm, single event, single-period model. The 

authors show that there exists an optimal level of security investment for a given security vulnerability and 

threat environment of each organization. Investing less than that optimal level will result in unacceptable 

security risks; on the other hand, investments exceeding the optimal level do not bring justifiable returns 

for the investment. Mazzoccoli and Naldi 2022 also provide an extensive literature review for the topic of 

interest. For additional references, see Huang et al 2008; Gordon et al 2012; Chong et al. 2022. 

Another line of research of interest deals with cybersecurity investment strategies for firms facing 

attacks (see Wu et al 2015; Zhuo and Solak 2014; Mayadunne and Park 2016, Naldi et al 2018; 

Mazzoccoli and Naldi 2021). The methodology used to analyze the issue including game theory, decision 

analysis, and stochastic programming. 

A third line of research of interest is about analyzing cyber insurance. Marotta et al. 2017 

conducted an excellent survey of cyber insurance models. Furthermore, various approaches have been 

developed for computing insurance premiums (see Franke 2017 and Strupczewski 2018, Mukhopadhyay et 

al. 2019; Naldi and Mazzoccoli 2018 and Mazzoccoli and Naldi 2020b; Rosson et al. 2019; Khalili et al. 

2018; Mastroeni et al. 2019).  

The fourth line of research combines vulnerability reduction investments with insurance coverage 

for residual risk. A number of papers have extended the Gordon and Loeb model to incorporate insurance 

in critical infrastructure cyber risk strategies (see Young et al 2016; Xu et al. 2019; Mazzoccoli and Naldi 

2020; Mazzoccoli and Naldi 2021). Mazzoccoli and Naldi 2022 deal with the problem of computing the 

optimal balance between investment and insurance payments to achieve the minimum overall security 

expense when the vulnerability grows over time according to a logistic function. Mazzoccoli 2023 reveals 

that the insurance premium tends to be the dominant component in the overall security expense in most 

cases which implies that the cost of insurance outweighs the cost of security investments. It is important to 

highlight that the security breach function plays a critical role in this line of research. This function 

describes the impact of investments on the probability of a successful attack. Modeling vulnerability 

through the security breach probability function satisfies the risk description step as it provides a 

probability value (Aven 2011, Aven and Flage 2020 and Hausken 2006). It also enables risk evaluation by 

computing the expected value of losses associated with breach events. Therefore, choosing an appropriate 

model for the security breach probability function is a fundamental step in probabilistic risk assessment for 

this line of research. Lee 2025 introduces a stochastic single period model to analyze the effects of using 

insurance to incentives firms facing correlated risks to invest in cybersecurity. Using a new modeling 

framework, Lee derives the breaching probability distribution without having to assume a particular 

functional form for the security breach function. The optimal cyber insurance for each firm is formulated 

as a nonlinear integer programming optimization problem. However, Lee’s static model does not allow the 

possibility that the hacker failed to breach the system and decided to try again in the next period. 

All the aforementioned research deals with single period models. A fifth line of research 

recognized the shortcoming of the single period model and dealt with multiple period models. David et al 

2018 argued that a single-period model is not adapted to capture dynamic aspects of information security 

investment such as the advent of disruptive technology. The extension to a multi-periods model is indeed 

necessary. Furthermore, the security breach probability function of the original Gordon and Loeb model 

could not be considered as continuously differentiable in the context of the introduction of a discrete 

radically innovative information security technology. David et al 2018 propose an extension of the 

Gordon-Loeb model by considering multi-periods and relaxing the assumption of a continuous security 

breach probability function. Like Gordon and Loeb model, their method requires an explicit assumption of 

the functional form of the security probability breach function. Another dynamic extension of Gordon and 

Loeb model has been proposed by Krutilla et al 2021. This is a deterministic model and like Gordon and 

Loeb model they assume a specific functional form for cybersecurity breach function. Mazzoccoli and 

Naldi 2022 deal with the problem of computing the optimal balance between investment and insurance 

payments to achieve the minimum overall security expense when the vulnerability grows over time 

according to a logistic function. Callegaro et al 2025 proposed a continuous-time stochastic Gordon-Loeb 

model for optimal cybersecurity investment under clustered attacks.  

 

1.2. Motivation and Our Contribution 

Our research question is three-fold. First, how should insurance companies’ price multiperiod 

cybersecurity insurance premiums to manage their exposure in this market (i.e., in a dynamic environment 

where multiple types of breaches among firms are often correlated)? Second, how can insurance  
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companies offer multiperiod cyber insurance contracts that incentivize the firm to implement the best 

practices or invest appropriately in cyber security? Third, how can we model the loss cost of the firm over 

multiple periods, which includes not only the direct costs of a breach, but the harder-to-estimate indirect 

costs that harm the value of the firm, such as loss of reputation, disruption of operations, etc.  

This paper aims to extend current research in dynamic integrated risk management strategy, 

combining insurance and cyber security investments, where the latter contributes to reducing the insurance 

premium over a multiple period planning horizon. It is understood that the term period meant a time 

duration of interest (e.g., day, week, month or year). Our model assumes a multiperiod planning horizon 

where the firm’s decision maker is risk averse and intends to use cyber insurance to deal with cyber risks. 

We show that the cyber insurer’s risk pooling process does reduce risk for individual firms even with 

correlated risk across firms. We also provide theoretical justification for our cyber insurance pricing 

formula. Comparative statics analysis shows that the proposed pricing formula confirms our intuition that 

cyber insurance prices would increase if the variability of loss, number of hackers/attacks or breaching 

probabilities increases. Utilizing our pricing model, we determine the firm’s optimal level of investment 

for cyber security. The main difference between our approach and existing research are as follows. First, 

the optimal information security problem is based on a static or one period model. We introduce a new 

multiperiod discrete-time stochastic model to study a dynamic integrated risk management strategy, 

combining insurance and cyber security investments, where the latter contributes to reducing the insurance 

premium over the multiperiod planning horizon. Our multiple period/discrete-time stochastic model allows 

us to analyze the effects of a hacker who failed to breach the system in a period but decided to try to 

breach the system again next period while it is not possible to model the retrial hacker in a static or one 

period model. We define the cyber security investment cost function as a discrete cost function of 

implemented cyber security level which is a more accurate representation of the observed discrete cyber-

investment cost curve in practice. For each period, we derive the mean and variance of the total cost 

function. Our method allows us to show that the per period performance measures converge to the long run 

averages geometrically. Secondly, a firm’s loss cost may not be deterministic because different types of 

cyber-attacks or breaches (e.g., malware, Code Injection Attacks, Denial-of-Service Attack, SQL Injection 

Attack, etc.) may lead to different recovery times and hence costs. By allowing for the possibility of 

random hacker dependent loss cost, we capture the dependence of loss costs on the type of cyber-attacks 

and recovery time. Our method requires us to know the first two moments of the firm’s loss cost. In 

practice, this flexibility allows us to utilize any available statistical methodologies that only uses the first 

two moments to estimate losses. Thirdly, each firm faces attacks by multiple types of hackers or threats. 

Our analysis allows the number of hackers or threats to be correlated. It enables us to model the software 

monoculture risk (Sobers, 2023; Petrosyan, 2023). We explicitly model the security system of the firm as a 

finite discrete multi-level system. Furthermore, the breaching probability for each firm is not necessarily 

the same and it also depends on the type of hacker initiating the cyber-attack. Our model includes the 

plausibility of security interdependence.  We analyze two cases of security interdependence; where a 

hacker breaches a firm then it breaches all firms and the case where a hacker breaches a firm then it does 

not necessarily breach all firms. For each period, we were able to derive the mean and variance of the 

number of hackers breaching the system as a function of the type of hacker and the security level deployed 

by the firm. We capture a more realistic decision-making process by taking into consideration the multiple 

types of correlated hackers, and security level deployed by individual firms. Finally, we noticed that cyber-

attacks may not be rare events but in comparison, cyber breaches are not as common. Therefore, we 

believe that expected cost is not an appropriate measure for evaluating different strategies for managing 

cyber risks. Our approach allows us to capture the trade-off between mean and variability. This is the 

trade-off that our model can capture whereas models that are based on mean cost would not be able to. 

Consequently, our model would offer valuable managerial insight into how firms with risk-averse decision 

makers should make decisions regarding using cyber insurance as part of their program in dealing with 

cyber security risks as well as its own investment in information and system security. Thus, instead of 

directly comparing the expected cost and expected benefits of cyber security investment, we analyze the 

optimal cyber security investment level using a different approach (e.g., mean-standard deviation analysis). 

Lastly, our approach differs significantly from the existing literature in that we do not assume a particular 

functional form for the security breach function. Rather, our approach derives performance measures of 

interest as a byproduct of our modeling framework without assuming a specific functional form for 

security breach function.  
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The remainder of this paper is organized as follows. We introduce a multi-firm, multiple-event, multiple-

period cyber security breach model in section 2. Our model allows the possibility of correlated cyber 

breaches across firms and the possibility for hackers who failed to breach the system in a period to retrial 

again next period. Section 3 analyzes the model introduced in section 2. We analyzed two types of security 

interdependence breaching process. The first type of security breaching process indicates that if a hacker 

breaches a firm, then it breaches all firms. The second type of security breaching process indicates that if a 

hacker breaches a firm, it is not necessary that it breaches all firms. We derive the mean and variance for 

several performance measures of interest including the number of breaches for a given period and the 

number of hackers failed to breach the system but decided to try again next period. We also show that the 

mean and variances of several performance measures approach the long run average with geometric 

convergence rate. Section 4 describes our cyber security investment cost model and the losses resulted 

from cyber-attacks. We show that by pooling the risk faced by the individual firm the insurer can reduce 

the individual firm’s risk even with the presence of correlated risks. We also show that correlated hackers 

arrival process increases the variance of the cost function. Section 5 introduces our cybersecurity insurance 

pricing model. Using our cybersecurity pricing formula, the optimal cyber security investment problem is 

formulated as a non-linear integer programming optimization problem. We also provide some theoretical 

and numerical results. The last section concludes and provides future directions for research. Appendix 

collects the proof of our results. 

 

2. The Hacker’s Model 

 
We aim to develop a multi-firm, multiple-event, multiple-period stochastic cyber security breach 

model. It is understood that the term period meant a time duration of interest (e.g., day, week, month or 

year). In this paper, we consider an insurer’s portfolio of 𝑤 firms (policyholders) exposed to the considered 

type of cyber risk incidents. We define cyber-attack as when there is an unauthorized system/network 

access by a third party. The person who carries out a cyberattack is termed as a hacker or 

threat. Throughout this paper, we will use the term hacker and threat interchangeably. Let 𝑇={s,1,2,…,h} 

be the set of all possible threats and let 𝑇𝑘 ∈ 𝑇 be the set of threats or hackers face by firm k for 𝑘 =
1, … , 𝑤. Effectively, we assume that each firm k must deal with |𝑇𝑘| types of hackers. For each 𝑖 ∈ 𝑇𝑘, let  

𝐴𝑘𝑖(𝑡) denote number of type i hackers attack firm k during period t; 𝑡 ≥ 1. We assume that 𝐴𝑘𝑖(𝑡) is a 

Poisson random variable with parameter 𝜆𝑘𝑖 and {𝐴𝑘𝑖(𝑡); all 𝑡, 𝑘 and 𝑖 } are independent random variables. 

Then, the total number of hackers attack firm k during period t is given by  

 

                                       𝐴𝑘(𝑡) = 𝐴𝑘𝑠(𝑡) + ∑ 𝐴𝑘𝑖(𝑡)𝑖∈𝑇𝑘\{𝑠}
.                                                                   (1) 

 

To model the software monoculture risk (Sobers, 2023; Petrosyan, 2023), we assume that there is 

a special type of software that is used by all firms. Therefore, we assume that 𝑠 ∈ 𝑇𝑘 for all 𝑘 = 1, … , 𝑤. In 

particular, we differentiate type s hacker from other types of hackers to model the software monoculture 

risk. Specifically, type s hacker attacks all w firms simultaneously upon arrival. While other (i.e., non-

special) types of hackers/threats attack only one firm upon arrival. By definition 𝐴𝑘𝑠(𝑡) = 𝐴𝑗𝑠(𝑡) for all 

k,j=1,2,…,w; 𝑡 ≥ 1 and 𝐴𝑘𝑠(𝑡) is a Poisson random variable with parameter 𝜆𝑘𝑠 ≡ 𝜆𝑠. From equation (1), 

we get  

                                  𝐴𝑘(𝑡) = 𝐴1𝑠(𝑡) + ∑ 𝐴𝑘𝑖𝑖∈𝑇𝑘\{𝑠} (𝑡) for all 𝑘 = 1, … , 𝑤.                                    (2) 

 

Remark 1: In this paper, we will use equation (1) with the assumption that {𝐴𝑘𝑠(𝑡); 1 ≤ 𝑘 ≤ 𝑤} are 

independent and identically distributed Poisson random variables with parameter 𝜆𝑘𝑠 = 𝜆1𝑠 = 𝜆𝑠  to 

represent the case of independent (i.e., without software monoculture) risks. 

 

Remark 2: For ease of exposition, we choose type s as the only type of hackers that attack all firms upon 

arrival. Our model allows one to deal with multiple types of hackers that attack a subset of firms upon 

arrival. 

 

The cyber-security counter measures implemented by a firm are usually a function of the budget 

allocated or investment in cybersecurity. Examples of cyber-security counter measures include identity 

management and access control, installing anti-malware and anti-phishing software, managing the  
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inventory of authorized and unauthorized devices and software, patch management, setting up a network 

and/or application firewalls, training of staff against social engineering attacks, data back-up and resource 

redundancies, physical security, etc.  

Let us denote the set of all available counter measures is 𝑈 = {0,1,2, … , 𝑢} and let 𝑈𝑘 ⊆ 𝑅 be the 

set of counter measures considered for implementation by firm k for 𝑘 = 1, … , 𝑤. We order the counter 

measures so that level 0 is the simplest (or least costly) and level |𝑈𝑘| is the most complex (or most 

expensive). One can interpret level 0 as no or minimum level counter measure implemented by firm k and 

level u as the firm implemented all available counter measures. We have three practical reasons for 

imposing the upper bound u on the maximum level of cyber security implemented. The first practical 

reason is due to the limited or available budget for cyber security investment. The second practical reason 

for imposing this upper bound is the negative side effects on the normal operation of an organization. 

Some examples of the negative side-effect include the downtime of a database server for applying a patch, 

every time an employee who gets a new digital device would need to spend time and go through the 

appropriate channel to gain access to the system, or the slowdown of network caused by an application 

proxy. The third practical reason for imposing this upper bound is that there is no perfect defense against 

cyber-attacks because new type of cyber-attacks (e.g., virus, malware, Code Injection Attacks, Denial-of-

Service Attack, phishing, SQL Injection Attack, etc.) continue to pop up as time progresses. Therefore, we 

will always need to live with a certain amount of residual risk even after we have deployed all available 

counter measures. 

To model the impact of hackers, we assume that at the end of every period, there are three possible 

mutually exclusive outcomes for each hacker: (i) the hacker successfully breached the firm’s security 

system; (ii) the hacker failed to breach the firm’s security system and decided to leave; and (iii) the hacker 

failed to breach the firm’s security system but decided to try again next period. 

Let us define 𝑚𝑘  as the level of counter measures implemented by firm k; let 𝛽𝑖(𝑚𝑘)  the 

probability that a type i hacker successfully breach firm k during period t; let 𝑑𝑘𝑖 the probability that a type 

i hacker fail to breach firm k and depart or leave the system during period t; and let 𝑟𝑘𝑖 the probability that 

a type i hacker fail to breach firm k the system during period t and decide to try again next period. We have 

by definition for all k and i; 
 

𝛽𝑖(𝑚𝑘) + 𝑑𝑘𝑖 + 𝑟𝑘𝑖 = 1;    0 ≤ 𝛽𝑖(𝑚𝑘) ≤ 1,    0 ≤ 𝑟𝑘𝑖 ≤ 1;     0 ≤ 𝑑𝑘𝑖 ≤ 1.             
 

For each period t, 𝑡 ≥ 1; let us define 𝑄𝑘𝑖(𝑡) as the number of type i hackers attack firm k at the beginning 

of period t; let 𝐷𝑘𝑖(𝑡) denote the number of type i hackers attack firm k during period t decided to leave the 

system without breaching the system; let us define 𝐵𝑘𝑖(𝑡) is the number of type i hackers successfully 

breached the firm k’s security system during period t and let 𝑅𝑘𝑖(𝑡) be the number of type i hackers failed 

to breach the firm k’s security system during period t but decided to try again next period.  

With these notations, for each k, i and t; we have the following flow balance equation,  

                           

𝑄𝑘𝑖(𝑡 + 1) = 𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡) − 𝐷𝑘𝑖(𝑡) − 𝐵𝑘𝑖(𝑡) = 𝑅𝑘𝑖(𝑡).                 (3) 

 

The first equality follows easily from the conservation of mass principal. The second equality follows from 

noticing that the only way that a hacker is in the system during period t would still remain in the system 

during the next period if and only if the hacker failed to breach the firm k’s security system during period t 

and decided to try again next period (i.e., 𝑅𝑘𝑖(𝑡) is the part of 𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡) that remains in the system at 

the end of the period). 

 

Remark 3: Suppose that for each k, i and t;  𝑅𝑘𝑖(𝑡) ≡ 0. Thus, every hacker failed to breach the security 

system would leave the system at the end of the period. In this case; our multiple periods problem becomes 

multiple (identical) copy of the 1 period problem analyzed in (Lee 2025).   

 

Noticed that for each k, i and t; given 𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡) we have (𝐵𝑘𝑖(𝑡), 𝐷𝑘𝑖(𝑡), 𝑅𝑘𝑖(𝑡)) is a multinomial 

random variable with parameters 𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡) and (𝛽𝑖(𝑚𝑘), 𝑑𝑘𝑖 , 𝑟𝑘𝑖). Therefore, we have 

 

    𝐸{𝐵𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝛽𝑖(𝑚𝑘)(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                                           (4.1) 

𝑉𝑎𝑟{𝐵𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝛽𝑖(𝑚𝑘)(1 − 𝛽𝑖(𝑚𝑘))(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                              (4.2) 

    𝐸{𝐷𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝑑𝑘𝑖(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                                                   (4.3) 
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𝑉𝑎𝑟{𝐷𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝑑𝑘𝑖(1 − 𝑑𝑘𝑖)(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                                 (4.4) 

                       𝐸{𝑅𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝑟𝑘𝑖(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                                  (4.5) 

                   𝑉𝑎𝑟{𝑅𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = 𝑟𝑘𝑖(1 − 𝑟𝑘𝑖)(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                 (4.6) 

      𝐶𝑜𝑣{𝑅𝑘𝑖(𝑡), 𝐷𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = −𝑟𝑘𝑖𝑑𝑘𝑖(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                                        (4.7) 

       𝐶𝑜𝑣{𝐵𝑘𝑖(𝑡), 𝐷𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = −𝑑𝑘𝑖𝛽𝑖(𝑚𝑘)(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡));                               (4.8) 

        𝐶𝑜𝑣{𝑅𝑘𝑖(𝑡), 𝐵𝑘𝑖(𝑡)|𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)} = −𝑟𝑘𝑖𝛽𝑖(𝑚𝑘)(𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡)).                                (4.9) 

 

 

To develop a model to analyze 𝐵𝑘𝑖(𝑡); the number of type i hackers successfully breached the firm k’s 

security system during period t, let  Б𝑘𝑣𝑖𝑗(𝑡) denote the indicator random variable associated with the event 

of 𝑣𝑡ℎtype i hacker successfully breach counter measures level j of firm k during period t;   

 

Б𝑘𝑣𝑖𝑗(𝑡) = {
1   if the 𝑣𝑡ℎtype 𝑖 hacker breach counter measures level 𝑗 of firm 𝑘 𝑑𝑢𝑟𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡,
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                                                        

 

 

and let us define 

                                    𝑃(Б𝑘𝑣𝑖𝑗(𝑡) = 1) = 𝛽𝑖𝑗;  0 ≤ 𝛽𝑖𝑗 ≤ 1  for all 𝑡, 𝑘, 𝑖, 𝑗 and 𝑣.  

 

Noticed that 𝛽𝑖𝑗 = 0 represents the case of perfect counter measures. In practice, we know that perfect 

counter measures don’t exists and hence we have 0 < 𝛽𝑖𝑗. 

 

We assume that {Б𝑘𝑣𝑖𝑗(𝑡); all 𝑡, 𝑘, 𝑣, 𝑖 and 𝑗 }  are independent random variables. Next, we can 

define the indicator random variable to represent the event where the 𝑣𝑡ℎ type i hacker breach all counter 

measures implemented by firm k during period t as ∏ Б𝑘𝑣𝑖𝑗(𝑡)
𝑚𝑘
𝑗=0  where we recall 𝑚𝑘  is the level of 

counter measures implemented by firm k. By definition, we have the probability that a type i hacker 

successfully breach firm k during period t as 

 

                            𝛽𝑖(𝑚𝑘) ≡ 𝑃(∏ Б𝑘𝑣𝑖𝑗(𝑡)
𝑚𝑘
𝑗=0 = 1) = ∏ 𝑃(Б𝑘𝑣𝑖𝑗(𝑡) = 1)

𝑚𝑘
𝑗=0 = ∏ 𝛽𝑖𝑗

𝑚𝑘
𝑗=0 .                    (5) 

 

Remark 4 (Property of the probability 𝛽𝑖(𝑚𝑘))  

 

(a): If 𝛽𝑖𝑗 = 0 for some 𝑗 then 𝛽𝑖(𝑚) = 0 for all 𝑚 ≥ 𝑗. Thus, we see that if a system is not vulnerable 

(i.e., has a perfect counter measures) to type i hacker attacks, then it will remain not vulnerable regardless 

of the additional level of security implemented/investment beyond the perfect counter measure 

implemented (i.e., the ideal case). 

 

(b) 𝛽𝑖(0) = 𝛽𝑖0. Thus, we see that if there is no investment in additional security controls, then there is no 

change in the likelihood of a successful breach. 

 

(c) The breach probability  𝛽𝑖(𝑚)  is a decreasing function of the firm’s security investment. That is 

∆𝛽𝑖(𝑚) = 𝛽𝑖(𝑚 + 1) − 𝛽𝑖(𝑚) = (𝛽𝑖,𝑚+1 − 1)𝛽𝑖(𝑚) ≤ 0  for all m≥ 0. Therefore, the system is made 

more secure as the level of cyber security implemented/invested; 𝑚𝑘 increases. We also have  ∆2𝛽𝑖(𝑚) =
𝛽𝑖(𝑚 + 2) − 2𝛽𝑖(𝑚 + 1) + 𝛽𝑖(𝑚) = 𝛽𝑖(𝑚){1 − 2𝛽𝑖,𝑚+1 + 𝛽𝑖,𝑚+2}. So we see that 𝛽𝑖,𝑗+1 ≥ 2𝛽𝑖𝑗 − 1 for 

all 𝑖, 𝑗 implies that ∆2𝛽𝑖(𝑚) ≥ 0. Noticed that if there is no limit of the level of counter measures the firm 

can employed then one have lim
𝑚𝑘→∞

𝛽𝑖(𝑚𝑘) = 0.  

It implies that we can implement or invest in an adequate level of cyber security and the 

probability of a successful breach can be made arbitrarily close to zero. By definition u is the maximum 

level of countermeasure available for implementation and 𝛽𝑖(𝑢) = ∏ 𝛽𝑖𝑗
𝑢
𝑗=0  represent the residual risk due 

to type i hacker that the firm must accept even after all available counter measures have been deployed. 

With the above notations, we can write 𝐵𝑘𝑖(𝑡) is the number of type i hackers successfully breached the 

firm k’s security system during period t as 

                                                               𝐵𝑘𝑖(𝑡) = ∑ ∏ Б𝑘𝑣𝑖𝑗(𝑡)

𝑚𝑘

𝑗=0

𝑄𝑘𝑖(𝑡)+𝐴𝑘𝑖(𝑡)

𝑣=1

                                                (6) 
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and we have 𝐵𝑘(𝑡) is the number of hackers successfully breaching the firm k’s security system during 

period t (i.e., the total number of security breaches) as 

                                                                𝐵𝑘(𝑡) = ∑ 𝐵𝑘𝑖(𝑚𝑘, 𝑡).

𝑖∈𝑇𝑘

                                                               (7) 

 

 

 

3. Mean-Variance Analysis 

In this section, we consider the issue of multi period cyber security interdependence. For any time 

period t, we will derive the mean and variance for the performance measures of interest such as the number 

of hackers successfully breaching the firm in each period and the number of hackers failing to breach the 

security system during a period but decided to try again during the next period. We start with the following 

result on the number of hackers in the system at the beginning of each period t; 𝑄𝑘𝑗(𝑡). 

 

Theorem 1: For any k, j and initial value of 𝑄𝑘𝑗(1); we have for 𝑡 ≥ 1  

 

𝐸 (𝑄𝑘𝑗(𝑡 + 1)) = 𝐸 (𝑄𝑘𝑗(1)) (𝑟𝑘𝑗)𝑡 + 𝑟𝑘𝑗𝜆𝑘𝑗

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
;                                                              (8) 

𝑉𝑎𝑟 (𝑄𝑘𝑗(𝑡 + 1)) = (𝑟𝑘𝑗
2 )𝑡𝑉𝑎𝑟 (𝑄𝑘𝑗(1)) + 𝐸 (𝑄𝑘𝑗(1)) 𝑟𝑘𝑗

𝑡 (1 − 𝑟𝑘𝑗
𝑡 ) + 𝑟𝑘𝑗𝜆𝑘𝑗(

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
);     (9)      

𝐶𝑜𝑣 (𝑄𝑘𝑠(𝑡 + 1), 𝑄𝑗𝑠(𝑡 + 1)) = (𝑟𝑘𝑠𝑟𝑗𝑠)𝑡𝐶𝑜𝑣 (𝑄𝑘𝑠(1), 𝑄𝑗𝑠(1)) + 𝑟𝑘𝑠𝑟𝑗𝑠𝜆𝑠(
1 − (𝑟𝑘𝑠𝑟𝑗𝑠)𝑡

1 − 𝑟𝑘𝑠𝑟𝑗𝑠
);  𝑘 ≠ 𝑗  (10) 

 

For ease of exposition the proof of our results is placed in the appendix. Given the initial value of 

the number of type i hackers attack firm k at the beginning of period 1, Theorem 1 provides us with the 

mean, variance and covariance of the number of hackers in the system at the beginning of each period 

during our multiple periods planning horizon. Utilizing this result, we get 

 

Theorem 2: For any k, j and initial value of 𝑄𝑘𝑗(1); for 𝑡 ≥ 1 we have 

                                          𝐸 (𝑅𝑘𝑗(𝑡)) = 𝐸 (𝑄𝑘𝑗(1)) (𝑟𝑘𝑗)𝑡 + 𝑟𝑘𝑗𝜆𝑘𝑗

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
;                                (11) 

𝑉𝑎𝑟 (𝑅𝑘𝑗(𝑡)) = 𝑟𝑘𝑗
2(𝑡)

𝑉𝑎𝑟 (𝑄𝑘𝑗(1)) + 𝑟𝑘𝑗
𝑡 (1 − 𝑟𝑘𝑗

𝑡 )𝐸 (𝑄𝑘𝑗(1))  + 𝑟𝑘𝑗𝜆𝑘𝑗(
1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
);             (12) 

                       𝐸 (𝐵𝑘𝑗(𝑡)) = 𝛽𝑗(𝑚𝑘)(𝑟𝑘𝑗)𝑡−1𝐸 (𝑄𝑘𝑗(1)) + 𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
;                        (13) 

𝑉𝑎𝑟 (𝐵𝑘𝑗(𝑡)) = 𝛽𝑗(𝑚𝑘)2(𝑟𝑘𝑗
2)𝑡−1𝑉𝑎𝑟 (𝑄𝑘𝑗(1)) + 𝑟𝑘𝑗

𝑡−1𝛽𝑗(𝑚𝑘) (1 − 𝑟𝑘𝑗
𝑡−1𝛽𝑗(𝑚𝑘)) 𝐸 (𝑄𝑘𝑗(1))   

                                    + 𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗 (
1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
)                                                                                     (14) 

                  𝐸 (𝐷𝑘𝑗(𝑡)) = 𝑑𝑘𝑗(𝑟𝑘𝑗)𝑡−1𝐸 (𝑄𝑘𝑗(1)) + 𝑑𝑘𝑗𝜆𝑘𝑗

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
;                                            (15) 

𝑉𝑎𝑟 (𝐷𝑘𝑗(𝑡)) = 𝑑𝑘𝑗
2(𝑟𝑘𝑗

2)𝑡−1𝑉𝑎𝑟 (𝑄𝑘𝑗(1)) + 𝑟𝑘𝑗
𝑡−1𝑑𝑘𝑗(1 − 𝑟𝑘𝑗

𝑡−1𝑑𝑘𝑗)𝐸 (𝑄𝑘𝑗(1))   

                                       + 𝑑𝑘𝑗𝜆𝑘𝑗(
1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
);                                                                                         (16) 

𝐶𝑜𝑣(𝐵𝑘𝑠(𝑡), 𝐵𝑖𝑠(𝑡)) = 𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑖)(𝑟𝑘𝑠𝑟𝑖𝑠)𝑡−1𝐶𝑜𝑣(𝑄𝑘𝑠(1), 𝑄𝑖𝑠(1))                                    

                                               + 𝜆𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑖)
1 − (𝑟𝑘𝑠𝑟𝑗𝑠)𝑡

1 − 𝑟𝑘𝑠𝑟𝑖𝑠
 ;      𝑘 ≠ 𝑖.                                           (17)  

 
Theorems 1 & 2 describe the dynamics of the system from period to period. It provides us with a way to 

compute for each period, the mean, variance and covariance to calculate several performance measures of  
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interest to us. With theorem 2, we can compute the mean and variance of the number of hackers 

successfully breaching the firm k’s security system during period t (i.e., the total number of security 

breaches). The following corollary follows immediately from theorem 2. 

 

Corollary 1: For any k, j and initial value of 𝑄𝑘𝑗(1); for 𝑡 ≥ 1 we have 

𝐸(𝐵𝑘(𝑡)) = ∑ 𝛽𝑗(𝑚𝑘)(𝑟𝑘𝑗)𝑡−1𝐸 (𝑄𝑘𝑗(1)) + 𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗

1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
𝑖∈𝑇𝑘

         

     𝑉𝑎𝑟(𝐵𝑘(𝑡)) = ∑ {𝛽𝑗(𝑚𝑘)2(𝑟𝑘𝑗
2)𝑡−1𝑉𝑎𝑟 (𝑄𝑘𝑗(1))

𝑖∈𝑇𝑘

                                                       

                                       + ∑ 𝑟𝑘𝑗
𝑡−1𝛽𝑗(𝑚𝑘) (1 − 𝑟𝑘𝑗

𝑡−1𝛽𝑗(𝑚𝑘)) 𝐸 (𝑄𝑘𝑗(1)) + 𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗 (
1 − (𝑟𝑘𝑗)𝑡

1 − 𝑟𝑘𝑗
)}

𝑖∈𝑇𝑘

. 

 

Utilizing theorem 1&2, the following result shows the geometric convergence of the mean and variance of 

the performance measures of interest to the long run or steady state value. 

 

Theorem 3: For any k, j and initial value of 𝑄𝑘𝑗(1); as 𝑡 → ∞ we have 

𝐸(𝑄𝑘𝑗) = 𝑉𝑎𝑟(𝑄𝑘𝑗) = 𝐸(𝑅𝑘𝑗) = 𝑉𝑎𝑟(𝑅𝑘𝑗) =
𝑟𝑘𝑗𝜆𝑘𝑗

1 − 𝑟𝑘𝑗
;                          (18) 

       𝐸(𝐵𝑘𝑗) = 𝑉𝑎𝑟(𝐵𝑘𝑗) =
𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗

1 − 𝑟𝑘𝑗
;                                                          (19) 

       𝐸(𝐷𝑘𝑗) = 𝑉𝑎𝑟(𝐷𝑘𝑗) =
𝑑𝑘𝑗𝜆𝑘𝑗

1 − 𝑟𝑘𝑗
;                                                                 (20) 

   𝐶𝑜𝑣(𝑄𝑘𝑠, 𝑄𝑗𝑠) =
𝑟𝑘𝑠𝑟𝑗𝑠𝜆1𝑠

1 − 𝑟𝑘𝑠𝑟𝑗𝑠
 ;                    𝑘 ≠ 𝑗;                                           (21) 

    𝐶𝑜𝑣(𝐵𝑘𝑠, 𝐵𝑗𝑠) =
𝜆1𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)

1 − 𝑟𝑘𝑠𝑟𝑗𝑠
 ;      𝑘 ≠ 𝑗.                                          (22) 

 

Theorem 3 specifies the steady state mean and variance of the performance measures of interest. 

Moreover, the rate of convergence is geometric and depends on the retrial rate 𝑟𝑘𝑗.  

 

Example 1: Suppose,𝑟𝑘𝑗 = 𝑟𝑘𝑠 = 𝑟𝑗𝑠 = 0.5 𝑎𝑛𝑑 𝑡 = 12  then we have 𝑟𝑘𝑗
12 = (0.5)12 = 0.000244  and 

(𝑟𝑘𝑠𝑟𝑗𝑠)12 ≈ 0 . Thus, we see that for a 12 period planning horizon, 𝐸(𝑋𝑘𝑗) − 𝐸 (𝑋𝑘𝑗(𝑡)) ≈

0;  𝑉𝑎𝑟(𝑋𝑘𝑗) − 𝑉𝑎𝑟(𝑋𝑘𝑗(𝑡)) ≈ 0 ; and 𝐶𝑜𝑣(𝑋𝑘𝑠, 𝑋𝑗𝑠) − 𝐶𝑜𝑣(𝑋𝑘𝑠(𝑡), 𝑋𝑗𝑠(𝑡)) ≈ 0   where 𝑋𝑘𝑗 ∈

{𝑄𝑘𝑗 , 𝐵𝑘𝑗 , 𝑅𝑘𝑗 , 𝐷𝑘𝑗}. 

 

It is important to realize that Theorem 3 does not say that (𝑄𝑘𝑗(𝑡), 𝐵𝑘𝑗(𝑡), 𝑅𝑘𝑗(𝑡), 𝐷𝑘𝑗(𝑡)) reach steady 

state distributions. They might. Our interest focuses on their mean, variance and covariance.   

The following corollary follows immediately from theorem 3 and corollary 1. It shows the geometric 

convergence of the mean and variance of the total number of security breaches to the long run or steady 

state value. 

 

Corollary 2: For any k, j and initial value of 𝑄𝑘𝑗(1);  as 𝑡 → ∞ we have  

 𝐸(𝐵𝑘) ≡ lim
𝑡→∞

𝐸(𝐵𝑘(𝑡)) = ∑
𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗

1 − 𝑟𝑘𝑗
𝑗∈𝑇𝑘

  &  𝑉𝑎𝑟(𝐵𝑘) ≡ lim
𝑡→∞

𝑉𝑎𝑟(𝐵𝑘(𝑡)) = ∑
𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗

1 − 𝑟𝑘𝑗
𝑗∈𝑇𝑘

.            

 

The above corollary justifies our intuition that the total number of security breaches is an increasing 

function of the hacker’s arrival rate, hacker’s retrial rate and the breaching probability. 
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4. Cost Model 

 
Each firm admits an individual risk profile characterized by several factors, e.g., potential loss, IT security 
level implemented, etc. Depending on the available budget, each firm has incentive to invest in cyber 

security or implement certain levels of counter measures to avoid cyber security breaches as loss due to 

cyber security breaches is costly. Let us define cyber security investment cost as the amount of money 

spent to enhance cybersecurity within a given period with the expectation of reducing financial loss due to 

cyber security breaches. In practice the cyber-investment cost curve is a discrete cost curve with a 

specified defense probability range (i.e., not the entire range between 0 and 1 as there is no perfect 

defense). This observation motivates us to define the cyber security investment cost function as a discrete 

cost function of implemented cyber security level. Let us denote firm k’s cost of security investment for 

maintaining countermeasure level m during period t as 𝑔𝑘(𝑚, 𝑡). We assume that 𝑔𝑘(𝑚, 1)  is a strictly 

increasing function of m; 𝑔𝑘(𝑚, 𝑡) is an increasing function of m and independent of t. That is 𝑔𝑘(𝑚, 𝑡) 

satisfies   

                         

   ∆𝑔𝑘(𝑚, 1) ≡ 𝑔𝑘(𝑚 + 1,1) − 𝑔𝑘(𝑚, 1) > 0 and ∆𝑔𝑘(𝑚, 𝑡) ≡ 𝑔𝑘(𝑚 + 1, 𝑡) − 𝑔𝑘(𝑚, 𝑡) ≥ 0;   𝑡 ≥ 2. 
 

One can also think of 𝑔𝑘(𝑚, 𝑡) as the subscription cost for the cybersecurity software that the firm 

implemented or more generally the IT security investment during period t.  

 

Remark 5(a): (Discrete cyber security investment cost curve) Let 𝑔𝑘(𝑚, 𝑡) = 𝑎𝑘𝑚 denote the firm k’s cost 

of implementing level m cybersecurity during period t. We assume that  

{𝑎𝑘𝑗|0 ≤ 𝑎𝑘𝑗 < 𝑎𝑘,𝑗+1 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑘 ≤ 𝑤; 0 ≤ 𝑗 ≤ 𝑢}.  That is, higher level of cybersecurity 

invested/implemented is more costly than lower level of cybersecurity invested/implemented. Two special 

cases of discrete cost function are the step function and the polynomial cost function.  

 

Remark 5(b): (S-curve) An investment cost curve widely used for cost estimation of technology projects 

is the S-curve or s-shaped curve. Our model allows us to model security investment cost as an S-curve. For 

a specific example, we can define 𝑔𝑘(𝑚, 𝑡) as a logistic function  𝑔𝑘(𝑚, 𝑡) =
𝑧1

(1+𝑒−𝑧2(𝑚−𝑧3))
 

where 𝑧1, 𝑧2 𝑎𝑛𝑑 𝑧3 are constants. In practice, we obtain these 3 constants by fitting the cost function into 

historical data using the multiple linear regression technique.  

 

We let the random variable 𝐿𝑘𝑣𝑖 denote the loss due to the 𝑣𝑡ℎtype i hacker breach all counter 

measures of firm k. We assume that the period t cost function for firm k; 𝐶𝑘(𝑚𝑘, 𝑡) can be written as a sum 

of security investment cost 𝑔𝑘(𝑚) and the period t loss cost  

 

  𝐶𝑘(𝑚𝑘, 𝑡) = 𝑔𝑘(𝑚, 𝑡) + ∑ 𝐿𝑘𝑣𝑠(𝑡)

𝐵𝑘𝑠(𝑡)

𝑣=1

+ ∑ ∑ 𝐿𝑘𝑣𝑖(𝑡)

𝐵𝑘𝑖(𝑡)

𝑣=1𝑖∈𝑇𝑘\{𝑠}

        for all 𝑘 and 𝑡.                          (23) 

 

By hypothesis, we assume that there is at least one type of software that is used by all firms. We 

differentiate type s hacker from other types of hackers to model the software monoculture risk. 

Specifically, type s hacker attacks all w firms simultaneously upon arrival. While other types (i.e., non-

zero) of hackers/threats attack only one firm upon arrival. We proposed two ways to model the loss cost 

associated with the software monoculture risk.  

 

4.1: Firm independent or identical loss due to software monoculture risk 

 

In this subsection, we are interested in analyzing the case where a type s hacker breaches a firm 

then it breaches all firms. We assume type s hacker uses some glitch/errors inherently associated with the 

commonly used software to breach the firm security process. Therefore, the breaching process is 

independent of the level of security implemented by the firm (i.e., breaching process for the commonly 

used software is the same for all firms). By hypothesis, we have 
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        𝛽𝑠(𝑚𝑘) ≡ 𝑃(Б𝑘𝑣𝑠(𝑚𝑘, 𝑡) = 1) = 𝛽𝑠   and    Б𝑘𝑙𝑠(𝑡) = Б1𝑙𝑠(𝑡)  for all 𝑡, 𝑘 and 𝑙. 
                   𝑄𝑘𝑠(𝑡) = 𝑄1𝑠(𝑡); 𝐵𝑘𝑠(𝑡) = 𝐵1𝑠(𝑡); 𝑅𝑘𝑠(𝑡) = 𝑅1𝑠(𝑡) and 𝐷𝑘𝑠(𝑡) = 𝐷1𝑠(𝑡)  for all k and t.  
 

Let 𝐿𝑘𝑣𝑠 denote the loss due to the 𝑣𝑡ℎtype s hacker breaches all counter measures of firm k. We assume 

that {𝐿𝑘𝑣𝑠 ≡ 𝐿𝑣𝑠; all 𝑘 and 𝑣 } are independent and identically distributed random variables with the first 

two moment of 𝐿𝑘𝑣𝑠 as 𝑙𝑠 𝑎𝑛𝑑 𝑙𝑠
(2)

(i.e., firm independent or identical loss). We let the random variable 𝐿𝑘𝑣𝑖 

(𝑖 ≠ 𝑠) denote the loss due to the 𝑣𝑡ℎtype i hacker breach all counter measures of firm k. We assume that 

{𝐿𝑘𝑣𝑖; all 𝑘, 𝑣 and 𝑖 ≠ 𝑠} are independent and identically distributed random variables with the first two 

moment of 𝐿𝑘𝑣𝑖 as 𝑙𝑘𝑖  𝑎𝑛𝑑 𝑙𝑘𝑖
(2)

. In practice, we can utilize any available statistical methodologies that only 

uses the first two moments to estimate losses. For example, Lin et al 2022 reported that in an empirical 

study that gamma distribution is a good choice for estimating individual firm total loss due to cyber 

breach.  

 Utilizing equation (23), we can easily compute the mean and variance of   𝐶𝑘(𝑚𝑘, 𝑡) as 

 

                      𝐸(𝐶𝑘(𝑚𝑘, 𝑡)) = 𝑔𝑘(𝑚𝑘) + 𝐸(𝐵𝑘𝑠(𝑡))𝑙𝑠 + ∑ 𝐸(𝐵𝑘𝑖(𝑡))𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖 .                         (24) 

                  𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘, 𝑡)) = [𝑙𝑠
(2)

− 𝑙𝑠
2] 𝐸(𝐵1𝑠(𝑡)) + 𝑙𝑠

2𝑉𝑎𝑟(𝐵1𝑠(𝑡))     

                                    + ∑ 𝐸(𝐵𝑘𝑖(𝑡))

𝑖∈𝑇𝑘\{𝑠}

[𝑙𝑘𝑖
(2)

− 𝑙𝑘𝑖
2 ] + ∑ 𝑉𝑎𝑟(𝐵𝑘𝑖(𝑡))

𝑖∈𝑇𝑘\{𝑠}

𝑙𝑘𝑖
2                 (25) 

 

where one can find the formula for 𝐸(𝐵𝑠𝑖(𝑡));  𝐸(𝐵𝑘𝑖(𝑡));  𝑉𝑎𝑟(𝐵𝑘𝑖(𝑡)) and 𝑉𝑎𝑟(𝐵1𝑠(𝑡)) via theorem 2. 

Furthermore, we have for 𝑘 ≠ 𝑗; the covariance of firm’s cost given by 

 

     𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘, 𝑡), 𝐶𝑗(𝑚𝑗 , 𝑡)) = 𝑉𝑎𝑟 (∑ 𝐿𝑣𝑠(𝑡)𝐵1𝑠(𝑡)
𝑣=1 ) = [𝑙𝑠

(2)
− 𝑙𝑠

2] 𝐸(𝐵1𝑠(𝑡)) + 𝑙𝑠
2𝑉𝑎𝑟(𝐵1𝑠(𝑡)).   (26) 

 

By hypothesis, there is no change in each firm k security investment (i.e., 𝑚𝑘 ) during the t periods 

planning horizon. Therefore, we have for all k and j 

 

                                   𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘, 𝑡), 𝐶𝑗(𝑚𝑗 , ℎ)) = 0 for 𝑡 ≠ ℎ.                                        (27) 

 

The insurer pools the risk associated with its portfolio of 𝑤 policyholders/firms. Risk pooling 

arrangements have two important effects. First, the variance or standard deviation of the average loss is 

reduced. Consequently, the probability of extreme outcomes for the firms participating in the risk pooling 

arrangement, both high and low, is reduced. Second, the distribution for the average loss becomes more 

bell-shaped (i.e., normal distribution) as the number of firms participating in the risk pool increases. We 

refer readers who are interested in learning more about insurance companies’ risk pooling arrangement to 

Harrington and Niehaus (2004) which provide an excellent elementary introduction to the topic of risk 

pooling arrangements.  

 

Notice that the t-periods risk faced by firm k is given by 

                                                               ∑ 𝐶𝑘(𝑚𝑘, ℎ)

𝑡

ℎ=1

.                                                                          (28) 

 

The insurer pools the risk associated with its portfolio of 𝑤 policyholders/firms. To implement the 

risk pooling arrangement, we define the t-periods average risk for the insurer, 𝐶(𝑡)̅̅ ̅̅ ̅̅  as   

                                                        𝐶(𝑡)̅̅ ̅̅ ̅̅ = (
1

𝑤𝑡
) ∑ ∑ 𝐶𝑘(𝑚𝑘, ℎ)

𝑤

𝑘=1

𝑡

ℎ=1

.                                                        (29)   

 

Using equations (24)-(25), we can compute 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ )  and 𝑉𝑎𝑟(𝐶(𝑡)̅̅ ̅̅ ̅̅ )    

      𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) = (
1

𝑤𝑡
) ∑ ∑ 𝑔𝑘(𝑚𝑘, ℎ) + 𝐸(𝐵𝑘𝑠(ℎ))𝑙𝑠 + ∑ 𝐸(𝐵𝑘𝑖(ℎ))

𝑖∈𝑇𝑘\{𝑠}

𝑙𝑘𝑖

𝑤

𝑘=1

𝑡

ℎ=1

  and                  (30)   
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𝑉𝑎𝑟(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) = (
1

𝑤𝑡
)

2

∑[∑ 𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘, ℎ))
𝑤

𝑘=1

𝑡

ℎ=1

+ 2 ∑ 𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘, ℎ), 𝐶𝑗(𝑚𝑗 , ℎ))]

1≤𝑗<𝑘≤𝑤

.   (31) 

Notice that theorem 3 assures that the following long run mean and variance of the per period cost function 

for firm k exists and equals  

                  𝐸(𝐶𝑘(𝑚𝑘)) ≡ lim
𝑡→∞

𝐸(𝐶𝑘(𝑚𝑘), 𝑡) = 𝑔𝑘(𝑚𝑘) +
𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖;    (32)  

              𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘)) ≡ lim
𝑡→∞

𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘), 𝑡) = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
+ ∑ 𝑙𝑘𝑖

(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} ;                 (33) 

     𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘), 𝐶𝑗(𝑚𝑗)) ≡ lim
𝑡→∞

𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘 , 𝑡), 𝐶𝑗(𝑚𝑗 , 𝑡)) = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
     for 𝑘 ≠ 𝑗.            (34) 

Therefore, The Law of Large Numbers and theorem 3 assures that 𝐶(𝑡)̅̅ ̅̅ ̅̅  converges to the true average cost 

𝐶̅ as t get larger. Using theorem 3 and equations (32)-(34), we get  

 

         𝐸(𝐶̅) = (
1

𝑤
) ∑ {𝑔𝑘(𝑚𝑘) +

𝛽𝑠(𝑚𝑘)𝜆𝑘𝑠

1−𝑟𝑘𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖}𝑤

𝑘=1  and                                   (35) 

        𝑉𝑎𝑟(𝐶̅) = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1 − 𝑟1𝑠
+ (

1

𝑤
)

2

∑ ∑ 𝑙𝑘𝑖
(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1 − 𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠}

𝑤

𝑘=1

.                                        (36)  

 

If the number of firms w is sufficiently large, the Lindeberg–Feller version of the Central Limit Theorem 

(Chow and Teicher 1997) applies and the distribution of 𝐶̅ is approximately normal. Therefore, 𝐶̅ can be 

approximated by a normal random variable with mean 𝐸(𝐶̅) and variance 𝑉(𝐶̅); 𝐶̅~𝑁(𝐸(𝐶̅) , 𝑉(𝐶̅)). 

Furthermore, we have   0 < lim
𝑤→∞

𝑉𝑎𝑟(𝐶̅) = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
< 𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘. 

Noticed that lim
𝑤→∞

𝑉𝑎𝑟(𝐶̅) > 0  implies that type s hackers or software monoculture created 

positively correlated risk for all firms. Therefore, we see that pooling the risk within the insurer’s portfolio 

cannot diversify away the software monoculture risk. However, pooling the risk within the insurer’s 

portfolio does reduce risk for each firm.  

 

Remark 6: (Independent risks) For the case of independent risks (i.e., equation (1)), we don’t have special 

types of hackers that simultaneously attack all firms. Equation (35) remains the same, but equation (36) 

simplifies to   

                                   𝑉𝑎𝑟(𝐶̅) = (
1

𝑤
)

2
𝑉𝑎𝑟(∑ 𝐶𝑘(𝑚𝑘)𝑤

𝑘=1 ) = (
1

𝑤
)

2
∑ ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘

𝑤
𝑘=1 𝑙𝑘𝑖

(2)
.             

Let 𝑉𝑖𝑛𝑑 denote the variance obtained from the above equation and let 𝑉𝑐𝑜𝑟𝑟 denote the variance obtained 

from equation (36). With these notations, we have the impact of correlated risks given by 

𝑉𝑐𝑜𝑟𝑟 − 𝑉𝑖𝑛𝑑 = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1 − 𝑟1𝑠
(
𝑤 − 1

𝑤
) > 0. 

Therefore, we see that correlated risk increases the variability of the cost incurred. 

 

The case of identical firms. 

An important special case is that all firms share the same risk profile. Then equations (35)-(36), reduce to  

                      𝐸(𝐶̅) = 𝐸(𝐶1(𝑚1)) = 𝑔1(𝑚1) +
𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
𝑙1𝑠 + ∑

𝛽𝑖(𝑚1)𝜆1𝑖

1−𝑟1𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙1𝑖     and               (37) 

                       𝑉𝑎𝑟(𝐶̅) = 𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
+ (

1

𝑤
) ∑ 𝑙𝑘𝑖

(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} .                                                         (38) 

Furthermore, we have  

                                  𝑉𝑎𝑟(𝐶1(𝑚1)) − 𝑉𝑎𝑟(𝐶̅) = (
𝑤−1

𝑤
) ∑ 𝑙𝑘𝑖

(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} > 0. 

Noticed that 𝑉(𝐶1(𝑚1)) − 𝑉(𝐶̅) is independent of the effect of type s hacker or software monoculture risk. 

Therefore, pooling risk from identical firms does reduce risk for each firm even with the present of 

software monoculture risk. However, pooling risk does not diversify the monoculture risk. 

 

4.2. Firm dependent loss due to software monoculture risk 

In this section, we assume that the breaching process for the commonly used software depends on 

the level of security that the firm implemented (i.e., firm security level dependent breaching process). 

Effectively, we are modeling the case where a type s hacker breaches a firm k but it may not necessarily 

breaches other firms (i.e., 𝛽𝑠(𝑚𝑘) ≡ 𝑃(Б𝑘𝑣𝑠(𝑚𝑘, 𝑡) = 1) is a function of 𝑘 and 𝑠).  
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We let the random variable 𝐿𝑘𝑣𝑖 denote the loss due to the 𝑣𝑡ℎtype i hacker breach all counter measures of 

firm k. We assume that {𝐿𝑘𝑣𝑖; all 𝑘 and 𝑣 } are independent and identically distributed random variables 

with the first two moment of 𝐿𝑘𝑣𝑖 as 𝑙𝑘𝑖  𝑎𝑛𝑑 𝑙𝑘𝑖
(2)

. Next, we can denote the period cost function for firm k; 

𝐶𝑘(𝑚𝑘, 𝑡)  as 

                𝐶𝑘(𝑚𝑘 , 𝑡) = 𝑔𝑘(𝑚𝑘) + ∑ 𝐿𝑘𝑣𝑠(𝑡)

𝐵𝑘𝑠(𝑡)

𝑣=1

+ ∑ ∑ 𝐿𝑘𝑣𝑖(𝑡)

𝐵𝑘𝑖(𝑡)

𝑣=1𝑖∈𝑇𝑘\{𝑠}

.                                     (39) 

Therefore, we can compute the mean and variance of 𝐶𝑘(𝑚, 𝑡) as 

                                  𝐸(𝐶𝑘(𝑚𝑘, 𝑡)) = 𝑔𝑘(𝑚𝑘) + 𝐸(𝐵𝑘𝑠(𝑡))𝑙𝑘𝑠 + ∑ 𝐸(𝐵𝑘𝑖(𝑡))𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖 .             (40) 

                                  𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘, 𝑡)) = [𝑙𝑘𝑠
(2)

− 𝑙𝑘𝑠
2 ] 𝐸(𝐵𝑘𝑠(𝑡)) + 𝑙𝑘𝑠

2 𝑉𝑎𝑟(𝐵𝑘𝑠(𝑡))     

                                                     + ∑ 𝐸(𝐵𝑘𝑖(𝑡))

𝑖∈𝑇𝑘\{𝑠}

[𝑙𝑘𝑖
(2)

− 𝑙𝑘𝑖
2 ] + ∑ 𝑉𝑎𝑟(𝐵𝑘𝑖(𝑡))

𝑖∈𝑇𝑘\{𝑠}

𝑙𝑘𝑖
2         (41) 

 

where 𝐸(𝐵𝑘𝑖(𝑡)), 𝐸(𝐵𝑘𝑠(𝑡)), 𝑉𝑎𝑟(𝐵𝑘𝑖(𝑡)) and 𝑉𝑎𝑟(𝐵𝑘𝑠(𝑡)) are given by theorem 2. 

 

Furthermore, we have for 𝑘 ≠ 𝑗; the covariance of firm’s cost given by 

                                   𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘, 𝑡), 𝐶𝑗(𝑚𝑗 , 𝑡)) =

𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)(𝑟𝑘𝑠𝑟𝑗𝑠)𝑡−1𝐶𝑜𝑣 (𝑄𝑘𝑠(1), 𝑄𝑗𝑠(1)) + 𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝜆𝑠 (
1−(𝑟𝑘𝑠𝑟𝑗𝑠)𝑡

1−𝑟𝑘𝑠𝑟𝑗𝑠
).  (42) 

 

Using equations (40)-(42), we can easily compute 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ )  and 𝑉𝑎𝑟(𝐶(𝑡)̅̅ ̅̅ ̅̅ ). Notice that theorem 3 

assures that the following long run mean, variance and covariance of the per period cost function for firm k 

exists and equals 

 

   𝐸(𝐶𝑘(𝑚𝑘)) ≡ lim
𝑡→∞

𝐸(𝐶𝑘(𝑚𝑘), 𝑡) = 𝑔𝑘(𝑚𝑘) + 𝑔𝑘(𝑚𝑘) +
𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖;     (43)  

 𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘)) ≡ lim
𝑡→∞

𝑉𝑎𝑟(𝐶𝑘(𝑚𝑘), 𝑡) = 𝑙𝑘𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖

(2)
;                                 (44) 

     𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘), 𝐶𝑗(𝑚𝑗)) ≡ lim
𝑡→∞

𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘 , 𝑡), 𝐶𝑗(𝑚𝑗 , 𝑡)) = 𝑙𝑘𝑠𝑙𝑗𝑠
𝜆1𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)

1−𝑟𝑘𝑠𝑟𝑗𝑠
.                       (45) 

Using equations theorem 3 and equations (43)-(45), we can compute the mean and variance of 𝐶̅;  

                        𝐸(𝐶̅) = (
1

𝑤
) ∑ {𝑔𝑘(𝑚𝑘) +

𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙𝑘𝑖}𝑤

𝑘=1  and                       (46) 

             𝑉𝑎𝑟(𝐶̅) = (
1

𝑤2) (∑ 𝑙1𝑖
(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘

) + (
1

𝑤
)

2
2 ∑ 𝑙𝑘𝑠𝑙𝑗𝑠

𝜆1𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)

1−𝑟𝑘𝑠𝑟𝑗𝑠
1≤𝑘<𝑗≤𝑤                    (47) 

Noticed that   

                               lim
𝑤→∝

𝑉𝑎𝑟(𝐶̅) = lim
𝑤→∝

(
1

𝑤
)

2
2 ∑ 𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘), 𝐶𝑗(𝑚𝑗))1≤𝑘<𝑗≤𝑤   

 

which may not be 0. This is the result of correlated risk represented by type s hackers. 

 

Remark 7: Noticed that equations (46)-(47) are different from equations (35)-(36). This is due to the 

difference in the breaching process assumptions (i.e., 𝛽𝑠(𝑚𝑘)).  

 

Remark 8: (Independent risks) For the case of independent risks, equation (47) reduces to 

                                𝑉(𝐶̅) = (
1

𝑤
)

2
𝑉(∑ 𝐶𝑘(𝑚𝑘)𝑤

𝑘=1 ) = (
1

𝑤
)

2
∑ ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘

𝑙𝑘𝑖
(2)𝑤

𝑘=1 .                        

 

Let 𝑉𝑖𝑛𝑑 denote the variance obtained from the above equation and let 𝑉𝑐𝑜𝑟𝑟 denote the variance obtained 

from equation (47). With these notations, we have the impact of correlated risks given by 

𝑉𝑐𝑜𝑟𝑟 − 𝑉𝑖𝑛𝑑 = (
1

𝑤
)

2

2 ∑ 𝑙𝑘𝑠𝑙𝑗𝑠

𝜆1𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)

1 − 𝑟𝑘𝑠𝑟𝑗𝑠
1≤𝑘<𝑗≤𝑤

> 0. 

 

Therefore, we see that correlated risk increases the variability of the cost incurred. 
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The case of identical firms. 

An important special case is that all firms share the same risk profile. Then equations (46)-(47), reduce to  

 

               𝐸(𝐶̅) = 𝐸(𝐶1(𝑚1)) = 𝑔1(𝑚1) +
𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
𝑙1𝑠 + ∑

𝛽𝑖(𝑚1)𝜆1𝑖

1−𝑟1𝑖
𝑖∈𝑇𝑘\{𝑠} 𝑙1𝑖     and                  (48) 

               𝑉𝑎𝑟(𝐶̅) = (
1

𝑤
) {∑

𝛽𝑖(𝑚1)𝜆1𝑖

1−𝑟1𝑖
𝑖∈𝑇1

𝑙1𝑖
(2)

} + (
𝑤−1

𝑤
) {𝑙1𝑠

2 (𝛽𝑠(𝑚1))2 𝜆1𝑠

1−𝑟1𝑠
2}.                                 (49) 

 

Noticed that using equations (44), (49) and theorem 3, we get  

lim
𝑤→∞

𝑉𝑎𝑟(𝐶̅) = 𝑙1𝑠
2 (𝛽𝑠(𝑚1))2

𝜆1𝑠

1 − 𝑟1𝑠
2

  and 

𝑉𝑎𝑟(𝐶1(𝑚1)) − 𝑉𝑎𝑟(𝐶̅)                                                                                                                                  

= (
𝑤 − 1

𝑤
) ∑

𝑙1𝑖
(2)

𝛽𝑖(𝑚1)𝜆1𝑖

1 − 𝑟1𝑖
𝑖∈𝑇1\{𝑠}

+ (
𝑤 − 1

𝑤
) [𝑙1𝑠

(2)
−

𝑙1𝑠
2𝛽𝑠(𝑚1)

1 + 𝑟1𝑠
]

𝛽𝑠(𝑚1)𝜆1𝑠

1 − 𝑟1𝑠
> 0. 

Therefore, pooling risk from identical firms does reduce risk for each firm even with the present of 

software monoculture risk.  

 

Section 5: Optimal level of cyber security investment  

 

The previous sections described our risk quantification process. It allows us to quantify the 

relationship between financial loss from cyberattack types and cyber breaching or defense probability. The 

output of the risk quantification process serves as input for our cyber security investment cost analysis. The 

cyber security investment cost analysis aims to provide financial justification to managers with 

quantification of trade-off between financial loss from cyber security breaches and cyber security 

investment cost. The goal of the cyber security investment cost analysis is to minimize the total cost of 

both financial loss from cyber security breaches and cyber security investment cost for targeted cyber 

security defense.  

The analysis in section 3 motivates us to set the cyber security insurance premium as a function of 

an organization's investment in cyber security (i.e., measures to reduce its risk). We also prefer a constant 

per period premium over the t periods planning horizon as no customers like premium increases. We 

propose the following per period insurance premium formula for our t period planning horizon 

                         

𝑝(𝜃𝛼, 𝑡) = 𝐸(𝐶̅(𝑡)) + 𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) = 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ )(1 +
𝜃𝛼√𝑉(𝐶̅(𝑡))

𝐸(𝐶̅(𝑡))
)                            (50) 

where 𝜃𝛼 represent the weight that measures our attitude towards risk and is an appropriate critical value 

for confidence level 1 − 𝛼  of the normal distribution. One can also interpret 
𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ )

𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ )
 as the loading 

associated with the insurance contract. The rationale for this premium formula is that if the number of 

firms w is sufficiently large, the Lindeberg–Feller version of the Central Limit Theorem (Chow and 

Teicher 1997) applies and the distribution of 𝐶(𝑡)̅̅ ̅̅ ̅̅  is approximately normal. Therefore, we have 

𝑃 (𝐶(𝑡)̅̅ ̅̅ ̅̅ ≤ 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) + 𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ ))  = 𝑃(𝑍 ≤ 𝜃𝛼) = 1 − 𝛼.                                       

 

From equations (13)-(14), one sees that 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) is a linear function of the breaching probability 𝛽𝑗(𝑚𝑘) 

and 𝑉𝑎𝑟(𝐶(𝑡)̅̅ ̅̅ ̅̅ )  is a quadratic function of the breaching probability 𝛽𝑗(𝑚𝑘) . Therefore, 𝑝(𝜃𝛼, 𝑡)  is a 

function of (𝑚1, 𝑚2, … , 𝑚𝑤), the firm’s implemented level of investment in cyber security.  

Another justification for our pricing formula is comparative statics. Intuitively, we would expect 

that insurance prices would increase if the loss, number of hackers/attacks or breaching probabilities 

increases. To see this, we let 𝑝𝐹𝐼𝑆𝐵𝑃(𝜃𝛼, 𝑡) (respectively, 𝑝𝐹𝐷𝑆𝐵𝑃(𝜃𝛼, 𝑡)) denote the pricing formula obtain 

by assuming firm independent of security breaching process (respectively, firm dependent of security 

breaching process). That is, we obtain 𝑝𝐹𝐼𝑆𝐵𝑃(𝜃𝛼, 𝑡) using equations (35)-(36) and we get 𝑝𝐹𝐷𝑆𝐵𝑃(𝜃𝛼, 𝑡) 

using equations (46)-(47). Then, for 𝒯𝜖{𝐹𝐼𝑆𝐵𝑃, 𝐹𝐷𝑆𝐵𝑃}; each k and i we have 
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𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝜆𝑠
> 0; 

𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝜆𝑘𝑖
> 0; 

𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝑙𝑘𝑠
> 0; 

𝜕𝑝𝒯(𝜃𝛼 , 𝑡)

𝜕𝑙𝑘𝑖
> 0; 

𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝑙𝑘𝑖
(2)

> 0; 
𝜕𝑝𝒯(𝜃𝛼 , 𝑡)

𝜕𝑙𝑘𝑠
(2)

> 0;  
𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝑟𝑘𝑖
> 0;

𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝛽𝑠(𝑚𝑘)
> 0; 

𝜕𝑝𝒯(𝜃𝛼, 𝑡)

𝜕𝛽𝑖(𝑚𝑘)
> 0. 

 

The above comparative static results justify our intuition where 𝑝𝐹𝐼𝑆𝐵𝑃(𝜃𝛼, 𝑡)  and 𝑝𝐹𝐷𝑆𝐵𝑃(𝜃𝛼, 𝑡)  are 

increasing function of number of hackers/attacks, breaching probabilities, retrial probabilities and the first 

two moments of loss. It also provides justification for the insurer to offer premium discount if the firm 

actively engages in reducing these sources of risks.   

Next, we shall present our analysis of the multi-period optimal cybersecurity investment problem. 

 

Mean‐Standard Deviation approach to finding an Optimal level of cyber security investment. 

We aim to find a set of counter measures which minimize the premium or cost incurred. Toward this goal, 

we formulate the following optimization problem (OP) 

min
(𝑚1,𝑚2,…,𝑚𝑤)

𝑝(𝜃𝛼, 𝑡) = 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) + 𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) 

              𝑠. 𝑡.  0 ≤ 𝑚𝑘 ≤ 𝑢  𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑤 

where u is the maximum level of security level available; 𝜃𝛼 represent the weight that measure our attitude 

towards risk and is an appropriate critical value for confidence level 1 − 𝛼  of the normal distribution. 

Thus, with probability 1 − 𝛼 we are then assured that 𝐶(𝑡)̅̅ ̅̅ ̅̅ ≤ 𝐸(𝐶̅(𝑡)) + 𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ ).  

Therefore, it is reasonable to seek a level of security investment for all firms (𝑚1, 𝑚2, … , 𝑚𝑤) that 

minimizes this upper bound limit 𝑝(𝜃𝛼, 𝑡) = 𝐸(𝐶(𝑡)̅̅ ̅̅ ̅̅ ) + 𝜃𝛼√𝑉(𝐶(𝑡)̅̅ ̅̅ ̅̅ ). 

The solution of (OP) provides a guideline for the insurer to incentivize the individual firm to 

invest optimally in cyber security. For example, if the individual firm invests optimally in cyber security, 

then the insurer may lower the premium according to the solution of (OP). In general (OP) is a complicated 

nonlinear integer programming optimization problem. For example, the cybersecurity investment function 

𝑔𝑘(𝑚) may not be convex and local optimal solution may not be global optimal solution for (OP). It is a 

well-known fact that integer programming and hence nonlinear integer programming is an NP-hard 

problem (i.e., there are no polynomial-time algorithmic solutions that exist for NP-hard problems). We 

refer the reader to (Li 2006) for an in-depth discussion on the difficulties and challenges for solving 

nonlinear integer programming.  

Theorem 3 shows that our performance measures converge geometrically to their steady state 

values and the rate of convergence is given by 𝑟𝑘𝑗 . If 𝑟𝑘𝑗
𝑡 ≈ 0, then 𝑝(𝜃𝛼) = 𝐸(𝐶̅) + 𝜃𝛼√𝑉(𝐶̅) ≈ 𝑝(𝜃𝛼, 𝑡). 

Thus, the solution of (OP) can be approximated by the solution of the steady state version of the optimal 

pricing problem (OP-I) 

min
(𝑚1,𝑚2,…,𝑚𝑤)

𝑝(𝜃𝛼) = 𝐸(𝐶̅) + 𝜃𝛼√𝑉(𝐶̅) 

              𝑠. 𝑡.  0 ≤ 𝑚𝑘 ≤ 𝑢  𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑤. 
 

Lemma 1: Let 𝑚∗(𝜃) denote the optimal solution to (OP-I) as a function of 𝜃. Then we have  

𝑚∗(𝜃) ≥ 𝑚∗(0). 
 

Lemma 1 implies that mean value analysis (i.e., 𝜃 = 0) tend to underestimate the investment in cyber 

security level. This result confirms our intuition that mean analysis ignores the variability of loss cost and 

hence underestimated the level of cyber security investment. For the special case of mean analysis (i.e., 

𝜃 = 0) , (OP-I) simplifies substantially. Effectively, for mean value analysis, (OP-I) a w variables 

optimization problem reduces to w individual firm optimization problem with a single variable, the firm’s 

cyber security investment level.  
 

Lemma 2. Suppose that 𝜃 = 0. Let 𝑚𝑖
∗(𝑡) be the solution to the following optimization problem 
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min
0≤𝑚≤𝑢

𝐸(𝐶𝑖(𝑚, 𝑡))  

and let 𝑚𝑖
∗ be the solution to the following optimization problem 

min
0≤𝑚≤𝑢

𝐸(𝐶𝑖(𝑚)). 

Then, (𝑚1
∗(𝑡), 𝑚2

∗(𝑡), … , 𝑚𝑤
∗ (𝑡)) is the optimal solution for (OP) and (𝑚1

∗ , 𝑚2
∗ , … , 𝑚𝑤

∗ ) is the optimal 

solution for (OP-I). 

 

Lemma 3: For (OP-I), the optimal value for the case of firm independent loss due to software monoculture 

risk is larger than the optimal value for the case of firm dependent loss due to software monoculture risk. 

Lemma 3 confirms our intuition that correlated risk imposes more loss cost than independent risk. 

We propose to examine numerically a variety of cases aimed at understanding the impact of cyber security 

investment versus average cost behavior. These numerical results also allow us to analyze the impact of 

correlated risk on the optimal level of cyber security investment for each firm. 

 

Numerical results – identical suppliers 

In this subsection, we shall perform some sensitivity analysis on numerical results obtained from 

solving (OP-I). We started out with a base case. Then we change the value of one of the parameters while 

keeping the value of all the other parameters at the base value. This allows us to isolate/highlight the 

individual effects of the variable under study and provides us with a guideline on how to choose the 

appropriate parameter value in setting up our pricing formula. To do that, we assume the case of identical 

firms and having the following parameters value as our base case:  

 

𝑇 =  𝑇𝑘 ={0,1,2,3}; 𝑛1 = 𝑛𝑘 = 3; |𝑇𝑘| = 𝑛𝑘 + 1 = 4; w=30; u=70; 𝑎 = 0; 𝜆𝑠 = 156; 𝜆0 = 𝜆𝑖 =104; 

𝑔𝑘(𝑚) = 5𝑚 + 10𝑚2; 𝑙𝑠 = 75; 𝑙𝑠
(2)

= 2 ∗ 𝑙1𝑠
2 = 11250; 𝑙0 = 𝑙𝑘𝑖 = 50; 𝑙0

(2)
= 𝑙𝑘𝑖

(2)
= 2 ∗ 𝑙0

2 = 5000; 

𝛽𝑠 = 0.25; 𝛽𝑠(𝑚) = (0.25)𝑚+1; 𝛽0(𝑚) = 𝛽𝑖(𝑚) = (0.8)𝑚+1;  𝑟𝑘𝑠 = 0.5(1 − 𝛽𝑠); 𝑟𝑘𝑖 = 0.5(1 − 𝛽𝑖(𝑚)). 

 

When one of the parameter’s values is changed, it is assumed that all the other parameters stay at 

the base value, unless otherwise noted. Tables 1–6 compare the numerical results given by (OP-I). Each 

entry in the table represents an ordered pair. The first (respectively, second) entry of each order pair 

provides value of optimal security investment level for FISBP (respectively, FDSBP). For each of these ten 

tables, we tabulate the value of optimal level security investment with three values of 𝜃𝛼 =
0, 1.645 & 1.96. The case 𝜃𝛼 = 0 represents mean value analysis. 

Table 1 consider sensitivity analysis when the value of 𝛽𝑠changes. Table 2 consider sensitivity 

analysis when the value of 𝛽0 changes. Table 3 consider sensitivity analysis when the value of 𝑙0 changes. 

Table 4 consider sensitivity analysis when the value of 𝑔1(𝑚)  changes. Table 5 consider sensitivity 

analysis when the value of 𝜆0 changes. Table 6 consider sensitivity analysis when the value of 𝑟11 changes. 

 

Table 1 Optimal m: sensitivity analysis of the value of 𝛽𝑠  

𝛽𝑠 (FISBP,FDSBP)  

𝛽𝑠 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

0.01 (12,12) (12,12) (12,12) 

0.05 (12,12) (12,12) (12,12) 

0.1 (12,12) (12,12) (12,12) 

0.25 (12,12) (12,12) (12,12) 

0.4 (12,12) (12,12) (12,12) 

0.5 (12,12) (12,12) (12,12) 

0.65 (12,12) (12,12) (12,12) 

0.8 (12,14) (12,14) (12,14) 

0.95 (12,16) (12,17) (12,17) 

0.99 (12,13) (12,13) (12,13) 
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Table 2 Optimal m: sensitivity analysis of the value of 𝛽0  

𝛽0 (FISBP,FDSBP) 

𝛽0 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

0.01 (1,3) (1,3) (1,3) 

0.05 (2,3) (2,3) (2,3) 

0.1 (2,3) (2,3) (2,3) 

0.25 (3,4) (3,4) (3,4) 

0.4 (5,5) (5,5) (5,5) 

0.5 (6,6) (6,6) (6,6) 

0.65 (8,8) (8,8) (8,8) 

0.8 (12,12) (12,12) (12,12) 

0.95 (16,16) (17,17) (17,17) 

0.99 (7,7) (7,7) (7,7) 

 

The results given in Table 1 indicating that optimal value of m is not sensitive to changes in 𝛽𝑠. 
This is due to the fact that the nature of our optimization problem choose the optimal m to keep the number 

of breaches small. The number of breaches depends on both 𝛽𝑠 (represent type s hacker) and 𝛽0 (represent 

4 types of hackers for this example). The value of 𝛽0  remains the same even though the value of 𝛽𝑠 

changes.  Therefore, the base case value of 𝛽0 limit the changes in m. On the other hand, Table 2 indicates 

that the optimal value of m is more sensitive to changes in 𝛽0 as 𝛽0 is more impactful than 𝛽𝑠 in keeping 

the number of breaches small.  

Tables 1-2 indicate that FISBP tends to have lower optimal value of m as compared to FDSBP. 

This is consistent with lemma 3. As 𝛽𝑠 𝑜𝑟 𝛽0 increases, the optimal level of investment in cyber security is 

increasing as 𝜃𝛼 increases. It is interesting to note that very high value of 𝛽0 = 0.99 illustrate the case 

where increases investment in cyber security is not justified as the reduction in losses due to security 

investment is not as great as the investment needed to secure such reduction. 

 

Table 3 Optimal m: sensitivity analysis of the value of 𝑙0  

𝑙0 (FISBP,FDSBP) {𝑙0
(2) = 2(𝑙0)2} 

𝑙0 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

50 (12,12) (12,12) (12,12) 

150 (15,15) (15,15) (15,16) 

300 (18,18) (18,18) (18,18) 

600 (20,20) (20,21) (20,21) 

1500 (24,24) (24,24) (24,24) 

3000 (26,26) (27,27) (27,27) 

6000 (29,29) (30,30) (30,30) 

10000 (31,31) (32,32) (32,33) 

15000 (33,33) (34,34) (34,35) 

20000 (34,34) (36,36) (36,36) 

 

Given that our base case value for 𝛽0 = 0.8; tables 3 indicate that average loss 𝑙0has a significant 

impact on optimal m. Rising average losses 𝑙0 leads to higher level of m, investment in security.   

 

Table 4 Optimal m: sensitivity analysis of the value of 𝑔(𝑚)  

𝑔(𝑚) = 5𝑚 + 10𝑚2 (FISBP,FDSBP) 

𝑔(𝑚)=base 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

0.1*base (20,20) (20,20) (20,20) 

0.5*base (14,14) (14,14) (14,14) 

base (12,12) (12,12) (12,12) 

2*base (9,9) (9,9) (9,9) 

4*base (7,7) (7,7) (7,7) 

10*base (5,5) (5,5) (5,5) 

15*base (4,4) (4,4) (4,4) 
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20*base (3,3) (3,4) (3,4) 

40*base (2,2) (2,2) (2,2) 

80*base (1,2) (1,2) (1,2) 

 

The numerical results in table 4 confirm our intuition that low investment cost leads to a higher 

level of security investment as it is cheap to do so. The converse is also true. High investment costs lead to 

a lower level of security investment as it is expensive to do so.  

 

Table 5 Optimal m: sensitivity analysis of the value of 𝜆0  

𝜆0 (FISBP,FDSBP) 

𝜆0 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

52 (9,9) (9,9) (9,9) 

104 (12,12) (12,12) (12,12) 

156 (13,13) (13,13) (13,13) 

208 (14,14) (14,14) (14,14) 

260 (15,15) (15,15) (15,15) 

312 (15,15) (15,15) (15,15) 

364 (16,16) (16,16) (16,16) 

 

With our base case value for 𝛽0 = 0.8; table 5 indicate that average hacker arrival rate 𝜆0 has 

larger impact on optimal m. Rising average hacker arrival rate 𝜆0 means higher number of attacks and 

hence more breaches as our individual level breach probability of 0.8 is not low. Thus, to reduce the 

number of breaches the optimal level of security investment would need to increase. 

 

Table 6 Optimal m: sensitivity analysis of the value of 𝑟11  

𝑟11 (FISBP,FDSBP)  

𝑟11=base 𝜃𝛼 = 0 𝜃𝛼 = 1.645 𝜃𝛼 = 1.96 

0 (11,11) (11,11) (11,11) 

0.1*base (11,11) (11,11) (11,11) 

0.25*base (11,11) (11,11) (11,11) 

0.5*base (11,11) (11,12) (11,12) 

0.75*base (11,11) (11,12) (11,12) 

base (12,12) (12,12) (12,12) 

1.25*base (12,12) (12,12) (12,12) 

1.5*base (12,12) (12,12) (12,12) 

1.75*base (12,12) (12,12) (12,12) 

1.9*base (12,12) (12,12) (12,12) 

 

  The results given in Table 6 indicates that the optimal value of m is more sensitive to changes in 

𝑟11 as 𝑟11 is more impactful than 𝑟1𝑠 in keeping the mean and variance of the number of breaches small. 

Furthermore, as  𝑟11 increases, the optimal level of investment in cyber security is nondecreasing as 𝜃𝛼 

increases. 

 

6. Conclusion 
 

We develop a multiple-period/discrete-time stochastic cyber security breach model to study the 

effectiveness of our model in adjusting to potential future threats. Our model allows us to consider the 

transient effects of our discrete-time stochastic cyber security breaching model. It also allows us to model 

the possibility that a hacker who failed to breach the system in a period may decide to try breaching the 

system again in the next period. Our analysis allows us to take into consideration two types of breaching 

(identical across different firms and dependent on security implemented by the firm) process due to the 

software monoculture risk. We derive the mean, variance and covariance for the number of breaches for 

multiple types of hackers. Another significant difference between our approaches is that we derived our 

results as a byproduct of our model without assuming a particular form of security breach probability 

function. Furthermore, our approach shed light on how a firm could use cyber insurance in a multiple 

period planning horizon to manage its cyber security investment based on different characteristics of threat  
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environments and cyber security system configurations. To develop the cyber insurance pricing model, our 

method only requires us to know the first two moments of the loss associated with the firm. This flexibility 

allows us to utilize any available statistical methodologies that only uses the first two moments to estimate 

losses (e.g., Lin et al 2022). We proposed a mean-standard deviation approach to determine the optimal 

level of cyber security investment in the presence of multiple sources of risks. Our formulation of the 

problem generalizes the conventional mean value (or risk neutral) analysis. It also allows us to take into 

consideration the need to balance two conflicting objectives: loss and cyber security investment. 

Furthermore, it incentivizes the firm to engage in appropriate cyber security investment to reduce risk by 

providing premium discount that is a function of the firm’s cyber security investment. Some theoretical 

results regarding the solution of the cyber security optimal investment problem are given. The comparative 

statics analysis given for our pricing formula indicates that it is an increasing function of number of 

hackers/attacks, breaching probabilities, retrial probabilities, and the first two moments of loss. We show 

that firms that engage in mean value analysis consistently underestimated the optimal cyber security 

investment. The numerical results are tabulated in Tables 1–6.   

There are a few important and interesting open questions requiring more detailed analysis. The 

cost of cybersecurity insurance is based in part on cyber security investment, frequency, severity or loss 

due to cyber-attacks. It is a fact that cyber threats are continuously evolving and hence potential future 

threats also plays a role in determining cybersecurity insurance premium. To break away from escalating 

attacks and successfully deal with threat actors, there is a need to embrace a cyber security strategy that is 

constantly vigilant, actionably comprehensible, and adaptable to new threats or disruptive technologies. 

One important research issue to consider is the nonstationary transient effects of our cyber 

security breaching model. For example, we may face a situation where there are 6 types of threats at the 

beginning of the year, and two new types of threats start emerging 9 months later. Therefore, it is 

important to develop the extension of our cybersecurity breaching model to capture the impact of the 

newly emerging threats or disruption technologies. Furthermore, our analysis takes the number of 

hackers/attacks as an exogeneous variable. It is worthwhile exploring the trade-off of investing in 

procedures that may reduce the number of hackers/attacks and the cost of implementing such deterrence 

across firms. One may frame this as an issue where firms in private industry find it in their interest to join 

forces, pool resources or forming associations to fight cyber-crime. In particular, we intend to explore the 

plausibility of examining numerically a variety of cases aimed at understanding the loss due to cyber-

attacks vs. total cost behavior. These numerical results should give us some insights regarding our pricing 

model on the impact of risk and uncertainty in determining the appropriate cyber security insurance 

premium for the insurer and the optimal level of cyber security investment for the firms. We plan to extend 

our model toward analyzing such issues. 
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Appendix 

 

Proof of Theorem 1: Recall the flow balance equation 

                                       𝑄𝑘𝑖(𝑡 + 1) = 𝑄𝑘𝑖(𝑡) + 𝐴𝑘𝑖(𝑡) − 𝐷𝑘𝑖(𝑡) − 𝐵𝑘𝑖(𝑡) = 𝑅𝑘𝑖(𝑡).                               (3)                            
Using equation (3) and (4), we get  

𝐸 (𝑄𝑘𝑗(𝑡 + 1)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝐸 (𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝑟𝑘𝑗(𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡)).                               

Therefore, we get 

𝐸(𝑄𝑘𝑗(𝑡 + 1)) = 𝑟𝑘𝑗(𝐸(𝑄𝑘𝑖(𝑡)) + 𝜆𝑘𝑗) = 𝑟𝑘𝑗𝐸(𝑄𝑘𝑖(𝑡)) + 𝑟𝑘𝑗𝜆𝑘𝑗 . 

Now, equation (8) follows from repeated application of the above equation. Next, using the conditional 

variance formula, we get 

           𝑉𝑎𝑟(𝑄𝑘𝑗(𝑡 + 1)) = 𝐸𝑉𝑎𝑟 (𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) + 𝑉𝑎𝑟(𝐸(𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡))).           (51) 

Using equation (4), we get                              

𝑉𝑎𝑟 (𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝑟𝑘𝑗(1 − 𝑟𝑘𝑗) (𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡)). 

Therefore, we have  

      𝐸𝑉𝑎𝑟 (𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝑟𝑘𝑗(1 − 𝑟𝑘𝑗)(𝐸(𝑄𝑘𝑗(𝑡)) + 𝜆𝑘𝑗) 

                                                         = 𝑟𝑘𝑗(1 − 𝑟𝑘𝑗)𝐸 (𝑄𝑘𝑗(𝑡)) + 𝑟𝑘𝑗(1 − 𝑟𝑘𝑗)𝜆𝑘𝑗.                               (52) 

Next, using equation (4), we get  

    𝑉𝑎𝑟(𝐸(𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡))) = 𝑉𝑎𝑟(𝑟𝑘𝑗 (𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡)) = 𝑟𝑘𝑗
2𝑉𝑎𝑟 (𝑄𝑘𝑗(𝑡)) + 𝑟𝑘𝑗

2𝜆𝑘𝑗 .  (53) 

Thus, substituting equations (52) and (53) into equation (51), we get 

𝑉𝑎𝑟(𝑄𝑘𝑗(𝑡 + 1)) = 𝑟𝑘𝑗
2𝑉𝑎𝑟 (𝑄𝑘𝑗(𝑡)) + 𝑟𝑘𝑗

2𝜆𝑘𝑗+=  𝑟𝑘𝑗(1 − 𝑟𝑘𝑗)𝐸 (𝑄𝑘𝑗(𝑡)) + 𝑟𝑘𝑗(1 − 𝑟𝑘𝑗)𝜆𝑘𝑗 . 

Now, equation (9) follows from repeated application of the above equation. Lastly, notice that by 

hypothesis, we have that 𝐴𝑘𝑠(𝑡) = 𝐴𝑗𝑠(𝑡) for all 𝑘 and 𝑗. Next using the conditional covariance formula, 

we get for 𝑘 ≠ 𝑗; 

𝐶𝑜𝑣 (𝑄𝑘𝑠(𝑡 + 1), 𝑄𝑗𝑠(𝑡 + 1)) = 𝐶𝑜𝑣 (𝑅𝑘𝑠(𝑡), 𝑅𝑗𝑠(𝑡))

= 𝐸(𝐶𝑜𝑣 (𝑅𝑘𝑠(𝑡), 𝑅𝑗𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡))

+ 𝐶𝑜𝑣 (𝐸(𝑅𝑘𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡)), 𝐸(𝑅𝑗𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡)) 

= 0 + 𝐶𝑜𝑣 (𝑟𝑘𝑗(𝑄𝑘𝑠(𝑡) + 𝐴𝑘𝑠(𝑡)), 𝑟𝑘𝑗 (𝑄𝑗𝑠(𝑡) + 𝐴𝑘𝑠(𝑡))) 

                                       = 𝑟𝑘𝑠𝑟𝑗𝑠𝐶𝑜𝑣 (𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡)) + 𝑟𝑘𝑠𝑟𝑗𝑠𝜆𝑠.  

Now, equation (10) follows easily from repeated application of the above equation. ∎ 

 

Proof of Theorem 2: From the flow balance equation (3), we have  𝑄𝑘𝑗(𝑡 + 1) = 𝑅𝑘𝑗(𝑡). Therefore, 

equations (11)-(12) follow from equations (8)-(9). By hypothesis, we have  

 𝐸 (𝐵𝑘𝑗(𝑡)) = 𝐸 {𝐸 (𝐵𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡))} = 𝐸 {𝛽𝑗(𝑚𝑘) (𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡))} 

                                                                                    = 𝛽𝑗(𝑚𝑘)𝐸(𝑄𝑘𝑖(𝑡)) + 𝛽𝑗(𝑚𝑘)𝜆𝑘𝑗.                               

Now, equation (13) follows from repeated application of the above equation. Next, using the conditional 

variance formula, we get 

           𝑉𝑎𝑟(𝐵𝑘𝑗(𝑡 + 1)) = 𝐸𝑉𝑎𝑟 (𝐵𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) + 𝑉𝑎𝑟(𝐸(𝐵𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡))).           (54) 

Using equation (4), we get                              

    𝑉𝑎𝑟 (𝐵𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) (𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡)).                                (55) 

Therefore, we have 

 𝐸𝑉𝑎𝑟 (𝐵𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡)) = 𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) (𝐸(𝑄𝑘𝑗(𝑡)) + 𝜆𝑘𝑗)   

                                                         = 𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) 𝐸 (𝑄𝑘𝑗(𝑡)) + 𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) 𝜆𝑘𝑗. (56)  

Next, using equation (4) we have  

  𝑉𝑎𝑟(𝐸(𝑅𝑘𝑗(𝑡)|𝑄𝑘𝑗(𝑡), 𝐴𝑘𝑗(𝑡))) = 𝑉𝑎𝑟(𝛽𝑗(𝑚𝑘) (𝑄𝑘𝑗(𝑡) + 𝐴𝑘𝑗(𝑡))                                                                    

                                                              = 𝛽𝑗(𝑚𝑘)2𝑉𝑎𝑟 (𝑄𝑘𝑗(𝑡)) + 𝛽𝑗(𝑚𝑘)2𝜆𝑘𝑗 .                                           (57)                           
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Thus, substituting equations (56) and (57) into equation (54), we get 

𝑉𝑎𝑟(𝐵𝑘𝑗(𝑡)) = 𝛽𝑗(𝑚𝑘)2𝑉𝑎𝑟 (𝑄𝑘𝑗(𝑡)) + 𝛽𝑗(𝑚𝑘)2𝜆𝑘𝑗 +  𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) 𝐸 (𝑄𝑘𝑗(𝑡))

+ 𝛽𝑗(𝑚𝑘) (1 − 𝛽𝑗(𝑚𝑘)) 𝜆𝑘𝑗 . 

Now, equation (14) follows from repeated application of the above equation. The proof of equations (15)-

(16) is identical to the proof of equations (13)-(14) and hence omitted. Lastly, using the conditional 

covariance formula, we get for 𝑘 ≠ 𝑗; 

𝐶𝑜𝑣 (𝐵𝑘𝑠(𝑡), 𝐵𝑗𝑠(𝑡))

= 𝐸(𝐶𝑜𝑣 (𝐵𝑘𝑠(𝑡), 𝐵𝑗𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡))

+ 𝐶𝑜𝑣 (𝐸(𝐵𝑘𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡)), 𝐸(𝐵𝑗𝑠(𝑡)|𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡)) 

= 0 + 𝐶𝑜𝑣 (𝛽𝑠(𝑚𝑘)(𝑄𝑘𝑠(𝑡) + 𝐴𝑘𝑠(𝑡)), 𝛽𝑠(𝑚𝑘) (𝑄𝑗𝑠(𝑡) + 𝐴𝑘𝑠(𝑡)))

= 𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝐶𝑜𝑣 (𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡)) + 𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝜆𝑠   (58) 

where the first equality follows from the fact that given 𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡), 𝐴𝑘𝑠(𝑡); 𝐵𝑘𝑠(𝑡) and 𝐵𝑗𝑠(𝑡)  are 

independent random variables. Now, equation (15) follows from substituting equation (10) into the above 

equation. ∎ 

 

Proof of Theorem 3: By definition 0 ≤ 𝑟𝑘𝑗 , 𝛽𝑗(𝑚𝑘), 𝑑𝑘𝑗 and 𝑟𝑘𝑗 + 𝛽𝑗(𝑚𝑘) + 𝑑𝑘𝑗 = 1 for all k and j. 

Thus, we have lim
𝑡→∞

𝑟𝑘𝑗
𝑡 = 0; for all k and j. Now, Theorem 3 follows easily from Theorem 1 and 2 by 

taking limit as 𝑡 → ∞ of equations (8)-(17). ∎  

 

Proof of equation (42): We have for 𝑘 ≠ 𝑗; the covariance of firm’s cost given by 

                                   𝐶𝑜𝑣 (𝐶𝑘(𝑚𝑘, 𝑡), 𝐶𝑗(𝑚𝑗 , 𝑡)) = 𝐶𝑜𝑣 (∑ 𝐿𝑘𝑣𝑠(𝑡)𝐵𝑘𝑠(𝑡)
𝑣=1 , ∑ 𝐿𝑗𝑣𝑠(𝑡)

𝐵𝑗𝑠(𝑡)

𝑣=1 ) 

= 𝐸 {𝐶𝑜𝑣 (∑ 𝐿𝑘𝑣𝑠(𝑡)𝐵𝑘𝑠(𝑡)
𝑣=1 , ∑ 𝐿𝑗𝑣𝑠(𝑡)

𝐵𝑗𝑠(𝑡)

𝑣=1 ) |𝐵𝑘𝑠(𝑡), 𝐵𝑗𝑠(𝑡)}

+ 𝐶𝑜𝑣 (𝐸 (∑ 𝐿𝑘𝑣𝑠(𝑡)𝐵𝑘𝑠(𝑡)
𝑣=1 |𝐵𝑘𝑠(𝑡)) , 𝐸 (∑ 𝐿𝑗𝑣𝑠(𝑡)

𝐵𝑗𝑠(𝑡)

𝑣=1 |𝐵𝑗𝑠(𝑡))) 

= 0 + 𝐶𝑜𝑣 (𝑙𝑘𝑠𝐵𝑘𝑠(𝑡), 𝑙𝑗𝑠𝐵𝑗𝑠(𝑡))                                                                                  

= 𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝐶𝑜𝑣 (𝑄𝑘𝑠(𝑡), 𝑄𝑗𝑠(𝑡)) + 𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝜆𝑠               

= 𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)(𝑟𝑘𝑠𝑟𝑗𝑠)𝑡−1𝐶𝑜𝑣 (𝑄𝑘𝑠(1), 𝑄𝑗𝑠(1)) + 𝑙𝑘𝑠𝑙𝑗𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)𝜆𝑠(
1 − (𝑟𝑘𝑠𝑟𝑗𝑠)𝑡

1 − 𝑟𝑘𝑠𝑟𝑗𝑠
)  

where the third equality follows from the fact that given 𝐵𝑘𝑠(𝑡), 𝐵𝑗𝑠(𝑡) and 𝑘 ≠ 𝑗;  ∑ 𝐿𝑘𝑣𝑠(𝑡)𝐵𝑘𝑠(𝑡)
𝑣=1  and 

∑ 𝐿𝑗𝑣𝑠(𝑡)
𝐵𝑗𝑠(𝑡)

𝑣=1  are independent random variables and the last equality follows from theorem 1. ∎ 

 

Proof of Lemma 1: By definition, we have 

                𝐸(𝐶̅(𝑚∗(0))) ≤ 𝐸 (𝐶̅(𝑚∗(𝜃)))   𝑎𝑛𝑑                                                   (59) 

𝐸 (𝐶(̅̅ ̅𝑚∗(𝜃)) + 𝜃√𝑉(𝐶̅(𝑚∗(𝜃)) ≤ 𝐸 (𝐶(̅̅ ̅𝑚∗(0)) + 𝜃√𝑉(𝐶̅(𝑚∗(0))           (60) 

Rearranging terms from equation (60); 

𝜃√𝑉(𝐶̅(𝑚∗(0)) ≥ 𝐸 (𝐶(̅̅ ̅𝑚∗(𝜃)) − 𝐸 (𝐶(̅̅ ̅𝑚∗(0)) + 𝜃√𝑉(𝐶̅(𝑚∗(𝜃)) ≥ 𝜃√𝑉(𝐶̅(𝑚∗(𝜃)) .   

where the last inequality follows from equation (59). Thus, we have  

                                           𝑉(𝐶̅(𝑚∗(𝜃)) ≤ 𝑉(𝐶̅(𝑚∗(0)).                                                                (61)    
Noticed that equation (36) or (47) indicates that all the coefficients of the variance function are positive. 

By definition of 𝛽𝑘𝑖(. ), we have for all k, i and j 

𝛽𝑘𝑖(𝑚∗(0)) − 𝛽𝑘𝑖(𝑚∗(𝜃)) ≥ 0 if and only if 𝑚∗(𝜃) ≥ 𝑚∗(0)  and 

𝛽𝑘𝑖(𝑚∗(0)) − 𝛽𝑘𝑖(𝑚∗(𝜃)) ≥ 0 if and only if 𝛽𝑘𝑗(𝑚∗(0)) − 𝛽𝑘𝑗(𝑚∗(𝜃)) ≥ 0. 
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Therefore, substituting equation (36) or (47) into equation (61), and using the above observations about 

𝛽𝑖(. ), we conclude that 𝛽𝑖(𝑚∗(0)) − 𝛽𝑖(𝑚∗(𝜃)) ≥ 0 and hence 𝑚∗(𝜃) ≥ 𝑚∗(0). ∎ 

 

Proof of Lemma 2: The result follows easily by noticing that the objective functions 𝐸(𝐶̅(𝑡)) 𝑎𝑛𝑑 𝐸(𝐶̅) 

are separable and   

𝐶̅(𝑡) = (
1

𝑤𝑡
) ∑ ∑ 𝐶𝑘(𝑚𝑘, ℎ)

𝑤

𝑘=1

𝑡

ℎ=1

 and 𝐶̅ = (
1

𝑤
) ∑ 𝐶𝑘(𝑚𝑘)

𝑤

𝑘=1

. 

Thus, we have 

    min
0≤𝑚𝑖≤𝑢

𝐸(𝐶̅(𝑡)) = (
1

𝑤𝑡
) ∑ min

0≤𝑚𝑘≤𝑢
∑ 𝐸(𝐶𝑘(𝑚𝑘, ℎ))𝑡

ℎ=1
𝑤
𝑘=1  & min

0≤𝑚𝑖≤𝑢
𝐸(𝐶̅) =

(
1

𝑤
) ∑ min

0≤𝑚𝑖≤𝑢
𝐸(𝐶𝑖(𝑚𝑖))𝑤

𝑖=1 . ∎ 

 

Proof of Lemma 3: For the case of firm independent loss due to software monoculture risk, we get from 

equations (35)-(36),  

𝑃̂𝐹𝐼𝐿(𝜃𝛼, 𝑚) = 𝐸(𝐶̅) + 𝜃𝛼√𝑉(𝐶̅) = (
1

𝑤
) ∑{𝑔𝑘(𝑚𝑘) +

𝛽𝑠(𝑚𝑘)𝜆𝑘𝑠

1 − 𝑟𝑘𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1 − 𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠}

𝑙𝑘𝑖}

𝑤

𝑘=1

 

                                + 𝜃𝛼√𝑙𝑠
(2) 𝛽𝑠(𝑚1)𝜆1𝑠

1−𝑟1𝑠
+ (

1

𝑤
)

2
∑ ∑ 𝑙𝑘𝑖

(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠}

𝑤
𝑘=1   .                                 (62)                         

For the case of firm dependent loss due to software monoculture risk, we get from equations (46)-(47),  

𝑃̂𝐹𝐷𝐿(𝜃𝛼, 𝑚) = 𝐸(𝐶̅) + 𝜃𝛼√𝑉(𝐶̅) = (
1

𝑤
) ∑{𝑔𝑘(𝑚𝑘) +

𝛽𝑠(𝑚𝑘)𝜆𝑘𝑠

1 − 𝑟𝑘𝑠
𝑙𝑠 + ∑

𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1 − 𝑟𝑘𝑖
𝑖∈𝑇𝑘\{𝑠}

𝑙𝑘𝑖}

𝑤

𝑘=1

  

                                  + 𝜃𝛼√(
1

𝑤2) (∑ 𝑙1𝑖
(2) 𝛽𝑖(𝑚𝑘)𝜆𝑘𝑖

1−𝑟𝑘𝑖
𝑖∈𝑇𝑘

) + (
1

𝑤
)

2
2 ∑ 𝑙𝑘𝑠𝑙𝑗𝑠

𝜆1𝑠𝛽𝑠(𝑚𝑘)𝛽𝑠(𝑚𝑗)

1−𝑟𝑘𝑠𝑟𝑗𝑠
1≤𝑘<𝑗≤𝑤   .  (63) 

Let 𝑚𝐹𝐼𝐿denote the optimal solution of (OP I-I) with equation (62) as objective function. Let 𝑚𝐹𝐷𝐿 denote 

the optimal solution of (OP I-I) with equation (63) as objective function. Then, we have  

𝑃̂𝐹𝐷𝐿(𝜃𝛼, 𝑚𝐹𝐷𝐿) ≤ 𝑃̂𝐹𝐷𝐿(𝜃𝛼, 𝑚𝐹𝐼𝐿) ≤ 𝑃̂𝐹𝐼𝐿(𝜃𝛼, 𝑚𝐹𝐷𝐿) 

where the first inequality follows from the definition of 𝑚𝐹𝐷𝐿 and the second inequality follows from the 

observation that 𝛽𝑠 ≥ 𝛽𝑠(𝑚) implies that we have  𝑃̂𝐹𝐼𝐿(𝜃𝛼, 𝑚) ≥ 𝑃̂𝐹𝐷𝐿(𝜃𝛼, 𝑚).  ∎. 

 

 

 


